推荐系统
文章平均质量分 92
yangxudong
全世界的色彩都在自己心中.
展开
-
推荐系统中的特征工程
摘要:深度学习时期,与CV、语音、NLP领域不同,搜推广场景下特征工程仍然对业务效果具有很大的影响,并且占据了算法工程师的很多精力。数据决定了效果的上限,算法只能决定逼近上限的程度,而特征工程则是数据与算法之间的桥梁。本文尝试总结一些在推荐场景下做特征工程的常用套路,包括常用的特征变换算子、Bin-Counting技术以及特征查漏补缺的方法。读者受益深入理解常用的特征变换操作。了解优质特征工程的判断标准。掌握推荐场景下构建高质量特征的一般方法。一、为什么要精做特征工程在完整的机器学习流水线中,特征原创 2022-09-03 23:50:16 · 522 阅读 · 0 评论 -
推荐模型离线评测效果好,线上效果却不佳的原因
在推荐算法领域,时常会出现模型离线评测效果好,比如AUC、准召等指标大涨,但上线后业务指标效果不佳,甚至下降的情况,比如线上CTR或CVR下跌。本文尝试列举一些常见的原因,为大家排查问题提供一点思路。原创 2022-09-05 11:00:00 · 942 阅读 · 0 评论 -
推荐算法效果不佳时的检查清单
有时候我们会遇到推荐算法上线之后,效果不如预期的情况。这种情况下,该如何改进呢?下面就尝试列出一些检查清单,按照重要性的顺序,建议从上往下依次检查。当然,这些清单还不全面,欢迎大家一起来补充!原创 2022-09-04 17:00:00 · 246 阅读 · 0 评论