集成学习
文章平均质量分 91
yangxudong
全世界的色彩都在自己心中.
展开
-
【全网最浅显易懂】GBDT(xgboost)算法原理深入剖析
梯度提升(Gradient boosting)是一种用于回归、分类和排序任务的技术,属于Boosting算法族的一部分。Boosting是一族可将弱学习器提升为强学习器的算法,属于集成学习(ensemble learning)的范畴。。通俗地说,就是“三个臭皮匠顶个诸葛亮”的道理。梯度提升同其他boosting方法一样,通过集成(ensemble)多个弱学习器,通常是决策树,来构建最终的预测模型。Boosting、bagging和stacking是集成学习的三种主要方法。原创 2022-09-03 17:02:27 · 576 阅读 · 0 评论 -
GBDT算法原理深入解析
本文对GBDT算法原理进行介绍,从机器学习的关键元素出发,一步一步推导出GBDT算法背后的理论基础,读者可以从这个过程中了解到GBDT算法的来龙去脉。对于该算法的工程实现,本文也有较好的指导意义,实际上对机器学习关键概念元素的区分对应了软件工程中的“开放封闭原则”的思想,基于此思想的实现将会具有很好的模块独立性和扩展性。原创 2016-12-25 20:34:46 · 49197 阅读 · 35 评论 -
GBDT算法的特征重要度计算
基于树的集成算法还有一个很好的特性,就是模型训练结束后可以输出模型所使用的特征的相对重要度,便于我们选择特征,理解哪些因素是对预测有关键影响,这在某些领域(如生物信息学、神经系统科学等)特别重要。本文主要介绍基于树的集成算法如何计算各特征的相对重要度。原创 2016-12-27 21:22:59 · 43005 阅读 · 4 评论