理解Attention,MHA、MQA、GQA理论知识和代码实现

理论知识链接:理解Attention:从起源到MHA,MQA和GQA | Linsight

现有模型升级方法:https://blog.nghuyong.top/2023/09/10/NLP/llm-attention/

论文图片解释,区别在于KV的总特征大小不同,每个方块都是head_dim维度大小

pytorch代码实现:

class BaseAttention(torch.nn.Module):
    def __init__(self):
        super(BaseAttention, self).__init__()
        self.softmax = torch.nn.Softmax(dim=-1)

    def attention(self, q, k, v, mask=None, dropout=None):
        attn = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(q.shape[-1])

        if mask is not None:
            attn = at
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值