题目描述
有 n 个城市通过一些航班连接。给你一个数组 flights ,其中 flights[i] = [fromi, toi, pricei] ,表示该航班都从城市 fromi 开始,以价格 pricei 抵达 toi。现在给定所有的城市和航班,以及出发城市 src 和目的地 dst,你的任务是找到出一条最多经过 k 站中转的路线,使得从 src 到 dst 的 价格最便宜 ,并返回该价格。 如果不存在这样的路线,则输出 -1。
示例 1:
输入:
n = 3, edges = [[0,1,100],[1,2,100],[0,2,500]]
src = 0, dst = 2, k = 1
输出: 200
解释: 从城市 0 到城市 2 在 1 站中转以内的最便宜价格是 200,如图中红色所示。
示例 2:
输入:
n = 3, edges = [[0,1,100],[1,2,100],[0,2,500]]
src = 0, dst = 2, k = 0
输出: 500
解释:从城市 0 到城市 2 在 0 站中转以内的最便宜价格是 500,如图中蓝色所示。
Bellman-Ford算法的基本流程以及特点:
- 循环k次,遍历每条边,然后更新距离,更新公式为 dist[b]=min(dist[b],backup[a]+w);基本想法是基于动态规划的,给定f[k][i]表示的是从起点最多经过k条边到达i 的所有路径的最小值,状态转移方程为 f[k][i]=min(f[k-1][t]+c) 表示进过若干条边到 t,t 到 i 的距离为 c ,由于状态转移方程只用到了上一个状态,因此可以使用滚动数组,在使用滚动数组时注意保存上一次的状态(backup数组)。
- 允许出现负权边,可以用于判断图中是否存在负权边,但是一般使用SPFA来寻找,dikstra不允许出现负权边,因此有了负权边就不一定存在最短路,但是由于本类型的题目限制了路径的个数,因此可以使用Bellman-Ford求解,而且Bellman-Ford算法仅仅限于这样类型的题目。
- 循环时外层循环是限制的路径条数,循环内部是要遍历给定的数组,数组的结构为两条边的端点以及边之间的权重。初始化是给定的起始位置,起始位置并不一定非得从1开始。
- 初始化时使用了一个大的数字,在最后判断时判断INF/2,原因在于有可能存在一种情况,循环之后数字INF有所减少,但是减少的程度不大。最后返回目标位置的距离即可。
- 本题目中是进过k站,加上起始和终止位置的话一共k+2个站,那么经过的是k+1条边。
class Solution {
public:
const int INF=1e8;
int findCheapestPrice(int n, vector<vector<int>>& flights, int src, int dst, int k) {
vector<int> dist(n,INF);
dist[src]=0;
for(int i=0;i<k+1;i++)
{
auto backup=dist;
for(auto e:flights)
{
int a=e[0],b=e[1],w=e[2];
dist[b]=min(dist[b],backup[a]+w);
}
}
if(dist[dst]>=INF/2) return -1;
return dist[dst];
}
};