题意:
给长度为n的序列,询问区间中的元素个数(去重后的元素个数),m次询问,
n
在
[
1
,
3
∗
1
0
4
]
,
m
在
[
1
,
2
∗
1
0
5
]
n在[1,3*10^4], m在[1,2*10^5]
n在[1,3∗104],m在[1,2∗105]。
思路:
用莫队进行离线求答案,对给定的m个区间按块进行排序,然后进行缩进,不断更新贡献,从而得到m个询问的贡献值。
参考代码:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll maxn=1e6+5;
const ll mod=1e9+7;
ll a[maxn],pos[maxn];
struct node
{
ll l,r,q;
}p[maxn];
bool cmp(node a,node b)
{
if(pos[a.l]==pos[b.l])
return a.r<b.r;
return pos[a.l]<pos[b.l];
}
ll res,vis[maxn],ans[maxn];
void add(ll i)
{
if(!vis[a[i]])
res++;
vis[a[i]]++;
}
void sub(ll i)
{
vis[a[i]]--;
if(!vis[a[i]])
res--;
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
ll n;
cin>>n;
ll dis=sqrt(n);
for(ll i=1;i<=n;i++)
cin>>a[i],pos[i]=i/dis;
ll m;
cin>>m;
for(ll i=0;i<m;i++)
{
cin>>p[i].l>>p[i].r;
p[i].q=i;
}
sort(p,p+m,cmp);
ll l=1,r=0;
for(ll i=0;i<m;i++)
{
while(r<p[i].r)
add(++r);
while(l<p[i].l)
sub(l++);
while(r>p[i].r)
sub(r--);
while(l>p[i].l)
add(--l);
ans[p[i].q]=res;
}
for(ll i=0;i<m;i++)
cout<<ans[i]<<endl;
}