朴素贝叶斯、K-means、混合高斯模型为什么不适用于多特征关联挖掘
一、朴素贝叶斯
1、基本原理
这个算法的名字已经解释了这个算法所做的事情,朴素和贝叶斯。
朴素的意思是说,这个算法将样本中的每个特征都当作独立的,互不关联的个体。
贝叶斯概率相信大家都知道,即是用几个已知的条件概率,来求出未知的条件概率。
2、朴素贝叶斯算法实现伪代码:
1、对于某个样本x = {a1,a2,...,am}
2、有类别集合C = {y1,y2,...,yn}
3、计算...
原创
2019-11-28 11:29:53 ·
1368 阅读 ·
0 评论