CV感悟:YOLO与R-CNN的比较

一、首先理解下“一步法”和“两步法”

two-stage方法,如R-CNN系算法
即是两步法:
  -- 第一步选取候选框
  -- 第二步对这些候选框分类或者回归
  
one-stage方法,如Yolo和SSD
即是一步法:
  -- 其主要思路是均匀地在图片的不同位置进行密集抽样
  -- 抽样时可以采用不同尺度和长宽比,然后利用CNN提取特征后直接进行分类与回归
  -- 整个过程只需要一步,所以其优势是速度快

二、YOLO

即是YOU ONLY LOOK ONCE,俗称“一次就好”,我陪你去看天荒地老。。。跑题了。

先回忆下 R-CNN 是怎么选取候选框进行目标识别的
  -- 可以近似总结为暴力法(实际上是用selective-search选了2000个左右的候选框),本质上是每一个尺寸每一个像素循环一遍
  fast R-cnn
  -- 本质上就是提取候选框的速度比R-CNN快;
  所有R-CNN的方法都是将目标检测分为两部分实现的:
    -- 1)物体的类别;分类问题。
    -- 2)物体的区域,即bounding box,回归问题。

回到YOLO:
  -- 是直接当做回归问题求解,输入图像经过处理,可以直接获取到图像中物体的类别及其confidence以及物体的位置。
  -- 具体方法是:
    -- YOLO将输入图像分为S×S个grid,每个grid负责检测落入其中的物体。
    -- 如果物体的中心位置落入该grid,则该grid就负责检测出这个问题。
    -- 每个grid输出B个bounding box的同时还要输出C个物体属于某类的confidence
    -- 从B个里面挑选IOU最大的那个bounding box,同时C是总共包含的类的类别。

三、补充说明:什么是grid,什么是IOU

grid是网格的意思,一般YOLO方法会把图片划分为 S*S 的网格,每个网格都负责检测物体并输出物体类别和位置,计算IOU

IOU,简单来讲就是模型产生的目标窗口和原来标记窗口的交叠率
  -- 具体计算:检测结果(DetectionResult)与 Ground Truth 的交集比上它们的并集,即为检测的准确率 IoU

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值