2018 Multi-University Training Contest 8--HDU 6406 Taotao Picks Apples(线段树+前缀和)

题意:

给你一个长度为 n 的数组,有 m 次操作:第 p 个数为 q,求现在这个数组的最长递增子序列长度(从第一个开始,算出答案后第 p 个数要回到原来的值)。

题解:

如果我们要修改第 p 个数,要考虑区间[1, p-1]里的最长递增子序列长度 d1[index](index 是其最大值的下表) 和最大值 num[index] , 如果 q 大于 num[index] 则要答案就要加一,且在区间[p+1,  n]寻找第一个大于 q 的下标,以及这个点到 n 最长递增子序列长度 d2[index],就可以让他们相加就是答案了;同理如果 q 小于等于 num[index],则在区间[p+1,  n]寻找第一个大于 num[index] 的下标,以及这个点到 n 最长递增子序列长度 d2[index](index 是更新后的下标),就可以让他们相加就是答案了。

例如:

[1,2,3,4,4] 对应的d1数组为 [1,2,3,4,4],d2数组为 [4,3,2,1,1]。

我们把第3个数改为 1,则答案为 d1[2] + d2[4] = 3。

有多种方法来找最大值的小标。

线段树版本:

#include <algorithm>
#include  <iostream>
#include   <cstdlib>
#include   <cstring>
#include    <cstdio>
#include    <string>
#include    <vector>
#include    <bitset>
#include     <stack>
#include     <cmath>
#include     <deque>
#include     <queue>
#include      <list>
#include       <set>
#include       <map>
#define mem(a) memset(a, 0, sizeof(a))
#define pi acos(-1)
using namespace std;
typedef long long ll;

const int maxn = 1e5+10;

struct Tree{
    int l, r, maxx, index;
}tree[maxn << 2];

int ans, index, num[maxn], d1[maxn], d2[maxn];

void pushdown(int root){
    if(tree[root << 1].maxx >=tree[root << 1 | 1].maxx){
        tree[root].index = tree[root << 1].index;
        tree[root].maxx = tree[root << 1].maxx;
    }
    else{
        tree[root].index = tree[root << 1 | 1].index;
        tree[root].maxx = tree[root << 1 | 1].maxx;
    }
}

void build_tree(int root, int a, int b){
    tree[root].l = a;
    tree[root].r = b;
    int l = tree[root].l;
    int r = tree[root].r;
    if(l == r){
        tree[root].maxx = 0;
        tree[root].index = 0;
        return;
    }
    int mid = (a + b) >> 1;
    build_tree(root << 1, a, mid);
    build_tree(root << 1 | 1, mid+1, b);
    pushdown(root);
}

void queryLeft(int root, int ql,  int qr, int value){
    int l = tree[root].l;
    int r = tree[root].r;
    if(l == r){
        if(tree[root].maxx > value){
            index = min(l, index);
        }
        return;
    }
    int mid = (l + r) >> 1;
    if(l >= ql && qr >= r){
        if(tree[root << 1].maxx > value){
            queryLeft(root << 1, ql, qr, value);
        }
        else if(tree[root << 1 | 1].maxx > value){
            queryLeft(root << 1 | 1, ql, qr, value);
        }
        return;
    }
    if(ql <= mid){
        queryLeft(root << 1, ql, qr, value);
    }
    if(qr >= mid+1){
        queryLeft(root << 1 | 1, ql, qr, value);
    }
}

void update(int root, int id, int value){
    int l = tree[root].l;
    int r = tree[root].r;
    if(l == r){
        tree[root].maxx = value;
        tree[root].index = l;
        return;
    }
    int m = (l + r) >> 1;
    if(id <= m){
        update(root << 1, id, value);
    }
    else{
        update(root << 1 | 1, id, value);
    }
    pushdown(root);
}

void queryRight(int root, int ql, int qr){
    int l = tree[root].l;
    int r = tree[root].r;
    if(l >= ql && qr >= r){
        if(tree[root].maxx > num[index]){
            index = tree[root].index;
        }
        return;
    }
    int  mid = (l + r) >> 1;
    if(ql <= mid){
        queryRight(root << 1, ql, qr);
    }
    if(qr >= mid+1){
        queryRight(root << 1 | 1, ql, qr);
    }
}

int main(){
    int t;
    scanf("%d", &t);
    while(t--){
        int n, m, maxx = 0;
        scanf("%d %d", &n, &m);
        mem(d1);
        mem(d2);
        build_tree(1, 1, n);
        for(int i = 1; i <= n; i++){
            scanf("%d", &num[i]);
            d1[i] = d1[i-1];
            if(num[i] > maxx){
                d1[i]++;
                maxx = num[i];
            }
        }
        for(int i = n; i >= 1; i--){
            index = n+1;
            queryLeft(1, 1, n, num[i]);
            if(index > n){
                index = 0;
            }
            d2[i] = d2[index]+1;
            update(1, i, num[i]);
        }
//        for(int i = 1; i <= n; i++){
//        	cout<<d1[i]<<"  "<<d2[i]<<endl;
//		}
        while(m--){
            ans = 0;
            index = 0;
            int a, b;
            scanf("%d %d", &a, &b);
            if(a != 1){
                queryRight(1, 1, a-1);
            }
            ans += d1[index];
            if(b > num[index]){
                ans++;
            }
            else{
                b = num[index];
            }
            index = n+1;
            if(a != n){
                queryLeft(1, a+1, n, b);
            }
            ans += d2[index];
            printf("%d\n", ans);
        }
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值