文献阅读
文章平均质量分 92
曾英俊
这个作者很懒,什么都没留下…
展开
-
Interventional Few-Shot Learning
1 Introduction 作者提出在FSL中存在使用越强的预训练模型可以使得算法性能提高的悖论,其原因是预训练模型的旧知识会产生误导性从而看不见新知识,该悖论揭示了FSL中未知的系统性缺陷。在该文献中,作者首先指出了这一缺陷的原因:预训练可能会在FSL中产生不良影响,然后提出了一种新的FSL范式:介入性小样本学习(IFSL),以对抗这种不良影响,其理论基于预先训练的知识、小样本和类别标签之间的因果关系的假设。2 Methodology2.1 Few-Shot Learni...原创 2021-11-30 10:40:48 · 2785 阅读 · 1 评论 -
Invariance Matters: Exemplar Memory for Domain AdaptivePerson Re-identification
1 Introduction 该文献针对UDA应用于re-ID任务上主要通过减少图像级或属性特征级上源域和目标域之间的差距来解决个人识别中的问题,存在忽略目标域的域内变化。在本研究中,作者研究了三种基本不变性,即样本不变性、相机不变性和邻域不变性,并提出了一种新的无监督域适配方法,在训练过程中,在网络中引入样本记忆,以记忆目标集每个样本的最新表示。2 Methodology2.1 Overview of Framework 作者使用ImageNet上预先训...原创 2021-11-20 15:30:50 · 1792 阅读 · 0 评论 -
Contrastive Embedding for Generalized Zero-Shot Learning
Contrastive Embedding for Generalized Zero-Shot Learning1 Introduction GZSL在分类训练中存在原始特征空间远离语义信息从而导致缺乏辨别能力。文献提出一种混合GZSL框架,是基于特征生成方法和嵌入空间实现的,在特征生成模型的基础上嫁接了一个嵌入模型,由特征生成模型生成的真实可见特征和合成不可见特征映射到一个新的嵌入空间。主要贡献有以下三个方面:(1)提出了一种基于嵌入模型和基于特征生成模型相结合的混合GZSL框...原创 2021-11-16 20:43:01 · 1835 阅读 · 0 评论 -
Counterfactual Zero-Shot and Open-Set Visual Recognition
1 Introduction 文献提出一个反事实框架,是由对不可见类的泛化来支撑的。作者基于反事实的一致性规则(反事实确实是基本事实,反事实就等于事实)原创 2021-11-15 17:01:56 · 1701 阅读 · 0 评论 -
Unsupervised person re‑identification via K‑reciprocal encoding and style transfer
1 Introduction 该文献研究完全无监督的re-ID问题,设计的算法主要基于以下三个方面:(1)克服不同相机的图像风格差异,例如照明、遮挡和视点(使用StarGAN生成多张不同风格的图片,并随即选择一张作为输入);(2)为每个未标记的标识分配软伪标签(通过迭代应用k-倒数最近邻排除部分错误匹配,并根据特征相似性分配软伪标签);(3)从硬负样本中学习鉴别和鲁棒特征(挖掘硬负样本进行学习区分特征增强鲁棒性)。2 Methodology2.1 Camera style tra...原创 2021-11-10 20:50:25 · 2453 阅读 · 1 评论 -
Generative Causal Explanations for Graph Neural Networks
Generative Causal Explanations for Graph Neural Networks1 Introduction 该文献提出一种模型不可知算法Gem,适用于各种图学习任务中为任何的GNN提供可解释性。Gem是一种基于格兰杰因果关系带有损失函数的因果解释模型,其将为GNN作出的决策进行解释看作一种因果学习任务。Gem不仅不要求对GNN的内部结构即非嵌入,而且具有很好的泛化性。Gem是属于一个统一的加性特征归因方法。2 Methodology2.1 Granger c原创 2021-10-18 16:54:49 · 1755 阅读 · 0 评论