Counterfactual Zero-Shot and Open-Set Visual Recognition
1 Introduction
文献提出一个反事实框架,是由对不可见类的泛化来支撑的。作者基于反事实的一致性规则(反事实确实是基本事实,反事实就等于事实)改变可见和不可见类的类属性来作为二元分类器。拟议的反事实框架是第一个为平衡和改进可见/不可见分类提供理论依据的框架。特别是,作者表明,分离Z和Y的质量是关键瓶颈,因此它是ZSL/OSR未来的一个潜在方向。
2 Methodology
2.1 Zero-Shot Learning (ZSL)
1)传统ZSL,其中模型仅在未可见类上评估;2)广义ZSL,其中模型在可见类上评估可见类和未可见类。一种常见的做法是使用一组额外的类属性 和 来分别描述可见类和不可见类。与独热标签嵌入相比,这些属性可视为密集标签嵌入。当上下文清楚时,将ZSL称为广义ZSL。
2.2 Open-Set Recognition (OSR)
它是用于评估可见类和不可见类,与ZSL不同的是,不可见类被标记为“未知”。OSR通过K维度的独热标签来标记每一个可见类,并不是通过密集标签。
2.3 Generative Causal Model
作者假设ZSL和OSR都遵循生成因果模型如图所示:
其中Z表示样本属性,Y表示类别属性。忽略混淆因素,给定Z和Y可以从条件分布生成X。同时给定X是可以通过后验和推断出Z和Y。
2.4 Counterfactual Generation and Inference
通过上图的GCM按照计算反事实的三个步骤生成反事实样本