Counterfactual Zero-Shot and Open-Set Visual Recognition

Counterfactual Zero-Shot and Open-Set Visual Recognition

1 Introduction

        文献提出一个反事实框架,是由对不可见类的泛化来支撑的。作者基于反事实的一致性规则(反事实确实是基本事实,反事实就等于事实)改变可见和不可见类的类属性来作为二元分类器。拟议的反事实框架是第一个为平衡和改进可见/不可见分类提供理论依据的框架。特别是,作者表明,分离Z和Y的质量是关键瓶颈,因此它是ZSL/OSR未来的一个潜在方向。

2 Methodology

2.1  Zero-Shot Learning (ZSL)

        1)传统ZSL,其中模型仅在未可见类上评估;2)广义ZSL,其中模型在可见类上评估可见类和未可见类。一种常见的做法是使用一组额外的类属性 y_{S} 和 y_{U} 来分别描述可见类和不可见类。与独热标签嵌入相比,这些属性可视为密集标签嵌入。当上下文清楚时,将ZSL称为广义ZSL。

2.2 Open-Set Recognition (OSR)

        它是用于评估可见类和不可见类,与ZSL不同的是,不可见类被标记为“未知”。OSR通过K维度的独热标签来标记每一个可见类,并不是通过密集标签。

2.3 Generative Causal Model

        作者假设ZSL和OSR都遵循生成因果模型如图所示:

         其中Z表示样本属性,Y表示类别属性。忽略混淆因素,给定Z和Y可以从条件分布P_{\theta }(X|Z,Y)生成X。同时给定X是可以通过后验Q_{\phi }(Z|X)Q_{\psi }(Y|X)推断出Z和Y。

2.4 Counterfactual Generation and Inference 

        通过上图的GCM按照计算反事实的三个步骤生成反事实样本

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值