一种建议是在python代码开始处写上
os.environ["CUDA_VISIBLE_DEVICES"]="0,1,2,3"
但本人尝试无效,同时也没有删除
加入了第二种方法:
python2 tools/train_net.py --multi-gpu-testing \
--cfg configs/getting_started/tutorial_2gpu_e2e_faster_rcnn_R-50-FPN.yaml \
OUTPUT_DIR /tmp/output USE_NCCL True
编译caffe2时要打开ncll,然后调用时 USE_NCCL True
本人最原始错误提示:[enforce fail at cudnn_wrappers.h:78] error == cudaSuccess. 77 vs 0.
大神讨论地址如下: