Computer Vision-CNN

本文介绍了如何使用机器学习框架,特别是基于线性和非线性的方法(如Perceptron和多层感知器)对图像特征进行分类。重点讨论了卷积神经网络(CNN)中的卷积层、池化操作以及其在处理局部相关性和参数优化中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

CNN(Convolutional Neural Network)

Import a question:classification

given a feature representing for images, how do we learn a model for distinguishing features from different classes?

The machine learning framework

1:prediction function to get desired output:
f(🍎)=apple
f(🍅)=tomato
f(🐮)=cow

2:The framework
请添加图片描述
here, there are two activities:

  • Training:knowing training set {(x1,y1)……(xn,yn)} estimate the prediction function f
  • Testing:knowing f,to test x and output value y=f(x)

Neural Networks(Linear)

  • Perceptron
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值