454.四数相加II
题目链接:454.四数相加II
这道题目是四个独立的数组,只要找到A[i] + B[j] + C[k] + D[l] = 0就可以,不用考虑有重复的四个元素相加等于0的情况,所以相对于题目15.三数之和,题目18. 四数之和,还是相对简单的。
class Solution {
public int fourSumCount(int[] nums1, int[] nums2, int[] nums3, int[] nums4) {
int result = 0;
Map<Integer,Integer> map = new HashMap<>();
//统计两个数组中的元素之和,同时统计出现的次数
//key:元素之和 value:次数
for(int i:nums1){
for(int j:nums2){
int sum = i+j;
map.put(sum,map.getOrDefault(sum,0)+1);
}
}
//统计剩余两个元素的和
for(int i:nums3){
for(int j:nums4){
int temp =i+j;
result+=map.getOrDefault(0-temp,0);
}
}
return result;
}
}
383. 赎金信
题目链接:383. 赎金信
这道题目和242.有效的字母异位词 (opens new window)很像,242.有效的字母异位词 (opens new window)相当于求 字符串a和字符串b是否可以相互组成 ,而这道题目是求字符串a能否组成字符串b,而不用管字符串b能不能组成字符串a。
本题使用map的空间消耗要比数组大一些的,因为map要维护红黑树或者哈希表,而且还要做哈希函数,是费时的!数据量大的话就能体现出来差别了。 所以数组更加简单直接有效!
class Solution {
public boolean canConstruct(String ransomNote, String magazine) {
if (ransomNote.length() > magazine.length()) {
return false;
}
// 定义一个哈希映射数组
int[] record = new int[26];
// 遍历
for(char c : magazine.toCharArray()){
record[c - 'a'] += 1;
}
for(char c : ransomNote.toCharArray()){
record[c - 'a'] -= 1;
}
// 如果数组中存在负数,说明ransomNote字符串总存在magazine中没有的字符
for(int i : record){
if(i < 0){
return false;
}
}
return true;
}
}
15. 三数之和
题目链接:15. 三数之和
两层for循环就可以确定 a 和b 的数值了,可以使用哈希法来确定 0-(a+b) 是否在 数组里出现过,其实这个思路是正确的,但是我们有一个非常棘手的问题,就是题目中说的不可以包含重复的三元组。把符合条件的三元组放进vector中,然后再去重,这样是非常费时的。
class Solution {
public List<List<Integer>> threeSum(int[] nums) {
List<List<Integer>> result = new ArrayList<>();
//返回值,可以对数据进行排序
Arrays.sort(nums);
// 找出a + b + c = 0
// a = nums[i], b = nums[left], c = nums[right]
// 排序之后如果第一个元素已经大于零,
//那么无论如何组合都不可能凑成三元组,直接返回结果就可以了
for(int i=0;i<nums.length;i++){
if(nums[i]>0){
return result;
}
//去重a
if(i>0&&nums[i]==nums[i-1]){
continue;
}
int left = i+1;
int right = nums.length-1;
while(right>left){
int sum = nums[i]+nums[left]+nums[right];
if(sum>0){
right--;
}else if(sum<0){
left++;
}else{
result.add(Arrays.asList(nums[i],nums[left],nums[right]));
// 去重逻辑应该放在找到一个三元组之后,对b 和 c去重
while(right>left&&nums[right]==nums[right-1]){
right--;
}
while(right>left&&nums[left]==nums[left+1]){
left++;
}
right--;
left++;
}
}
}
return result;
}
}
18. 四数之和
题目链接:18. 四数之和
对于15.三数之和 (opens new window)双指针法就是将原本暴力O(n3)的解法,降为O(n2)的解法,四数之和的双指针解法就是将原本暴力O(n4)的解法,降为O(n3)的解法。
双指针法将时间复杂度:O(n^2)的解法优化为 O(n)的解法。也就是降一个数量级,题目如下:
数组相关双指针题目:
27.移除元素(opens new window)
15.三数之和(opens new window)
18.四数之和(opens new window)
链表相关双指针题目:
206.反转链表(opens new window)
19.删除链表的倒数第N个节点(opens new window)
面试题 02.07. 链表相交(opens new window)
142题.环形链表II
class Solution {
public List<List<Integer>> fourSum(int[] nums, int target) {
List<List<Integer>> result = new ArrayList<>();
//返回值,可以对数据进行排序
Arrays.sort(nums);
for(int i=0;i<nums.length;i++){
/**
注意:
例如: 不要判断nums[i] > target 就返回了,三数之和可以通过 nums[i] > 0 就返回了,
因为 0 已经是确定的数了,四数之和这道题目 target是任意值。
比如:数组是[-4, -3, -2, -1],target是-10,不能因为-4 > -10而跳过。
但是我们依旧可以去做剪枝,对正数进行剪枝,
逻辑变成nums[i] > target && (nums[i] >=0 || target >= 0)就可以了。
*/
if(nums[i]>0&&nums[i]>target){
return result;
}
if(i>0&&nums[i-1]==nums[i]){
continue;
}
for(int j=i+1;j<nums.length;j++){
if(j>i+1&&nums[j-1]==nums[j]){
continue;
}
int left=j+1;
int right = nums.length-1;
while(right>left){
long sum = nums[i]+nums[j]+nums[left]+nums[right];
if(sum>target){
right--;
}else if(sum<target){
left++;
}else{
result.add(Arrays.asList(nums[i],nums[j],nums[left],nums[right]));
while(right>left&&nums[right]==nums[right-1]){
right--;
}
while(right>left&&nums[left]==nums[left+1]){
left++;
}
right--;
left++;
}
}
}
}
return result;
}
}