一、HBase拆分机制、HBase的Region拆分策略:
### --- Region 拆分机制
~~~ Region中存储的是大量的rowkey数据 ,当Region中的数据条数过多的时候,
~~~ 直接影响查询效率.当Region过大的时候.HBase会拆分Region , 这也是Hbase的一个优点 .
二、拆分策略
### --- 拆分策略
~~~ HBase的Region Split策略一共有以下几种:
### --- ConstantSizeRegionSplitPolicy
~~~ 0.94版本前默认切分策略
~~~ 当region大小大于某个阈值(hbase.hregion.max.filesize=10G)之后就会触发切分,
~~~ 一个region等分为2个region。
~~~ 但是在生产线上这种切分策略却有相当大的弊端:切分策略对于大表和小表没有明显的区分。
~~~ 阈值(hbase.hregion.max.filesize)设置较大对大表比较友好,
~~~ 但是小表就有可能不会触发分裂,极端情况下可能就1个,
~~~ 这对业务来说并不是什么好事。如果设置较小则对小表友好,
~~~ 但一个大表就会在整个集群产生大量的region,这对于集群的管理、资源使用、failover来说都不是一件好事。
### --- IncreasingToUpperBoundRegionSplitPolicy
~~~ # 0.94版本~2.0版本默认切分策略
~~~ 切分策略稍微有点复杂,总体看和ConstantSizeRegionSplitPolicy思路相同,
~~~ 一个region大小大于设置阈值就会触发切分。
~~~ 但是这个阈值并不像ConstantSizeRegionSplitPolicy是一个固定的值,
~~~ 而是会在一定条件下不断调整,
~~~ 调整规则和region所属表在当前regionserver上的region个数有关系.
~~~ # region split的计算公式是:
~~~ regioncount^3 * 128M * 2,当region达到该size的时候进行split
~~~ # 例如:
~~~ 第一次split:1^3 * 256 = 256MB
~~~ 第二次split:2^3 * 256 = 2048MB
~~~ 第三次split:3^3 * 256 = 6912MB
~~~ 第四次split:4^3 * 256 = 16384MB > 10GB
~~~ 因此取较小的值10GB后面每次split的size都是10GB了
### --- SteppingSplitPolicy
~~~ # 2.0版本默认切分策略
~~~ 这种切分策略的切分阈值又发生了变化,
~~~ 相比 IncreasingToUpperBoundRegionSplitPolicy 简单了一些,
~~~ 依然和待分裂region所属表在当前regionserver上的region个数有关系,如果region个数等于1,
~~~ 切分阈值为flush size * 2,否则为MaxRegionFileSize。
~~~ 这种切分策略对于大集群中的大表、
~~~ 小表会比 IncreasingToUpperBoundRegionSplitPolicy 更加友好,
~~~ 小表不会再产生大量的小region,而是适可而止。
### --- KeyPrefixRegionSplitPolicy
~~~ 根据rowKey的前缀对数据进行分组,这里是指定rowKey的前多少位作为前缀,
~~~ 比如rowKey都是16位的,指定前5位是前缀,
~~~ 那么前5位相同的rowKey在进行region split的时候会分到相同的region中。
### --- DelimitedKeyPrefixRegionSplitPolicy
~~~ 保证相同前缀的数据在同一个region中,
~~~ 例如rowKey的格式为:userid_eventtype_eventid,
~~~ 指定的delimiter为 _ ,则split的的时候会确保userid相同的数据在同一个region中。
### --- DisabledRegionSplitPolicy
~~~ 不启用自动拆分, 需要指定手动拆分
三、RegionSplitPolicy的应用
### --- RegionSplitPolicy的应用
~~~ Region拆分策略可以全局统一配置,也可以为单独的表指定拆分策略。
### --- 通过hbase-site.xml全局统一配置(对hbase所有表生效)
<property>
<name>hbase.regionserver.region.split.policy</name>
<value>org.apache.hadoop.hbase.regionserver.IncreasingToUpperBoundRegionSplitPolicy</value>
</property>
### --- 通过Java API为单独的表指定Region拆分策略
HTableDescriptor tableDesc = new HTableDescriptor("test1");
tableDesc.setValue(HTableDescriptor.SPLIT_POLICY,
IncreasingToUpperBoundRegionSplitPolicy.class.getName());
tableDesc.addFamily(new HColumnDescriptor(Bytes.toBytes("cf1")));
admin.createTable(tableDesc);
### --- 通过HBase Shell为单个表指定Region拆分策略
hbase(main):006:0> create 'test2', {METADATA => {'SPLIT_POLICY' =>
hbase(main):007:2* 'org.apache.hadoop.hbase.regionserver.IncreasingToUpperBoundRegionSplitPolicy'}},{NAME => 'cf1'}
HTableDescriptor tableDesc = new HTableDescriptor("test1");
tableDesc.setValue(HTableDescriptor.SPLIT_POLICY,
IncreasingToUpperBoundRegionSplitPolicy.class.getName());
tableDesc.addFamily(new HColumnDescriptor(Bytes.toBytes("cf1")));
admin.createTable(tableDesc);