CC00011.druid——|Hadoop&OLAP_Druid.V11|——|Druid.v11|架构|索引压缩机制|

本文深入探讨了Druid的数据存储架构,重点分析了其索引和压缩机制,包括Roll-up聚合前后的数据变化,位图索引的作用,并通过SQL查询实例展示了Druid在OLAP操作中的高效性能。内容涵盖了Hadoop背景下的Druid应用。
摘要由CSDN通过智能技术生成
一、索引及压缩机制
### --- Druid的查询时延低性能好的主要是因为采用了五个技术点:

~~~     数据预聚合
~~~     列式存储、数据压缩
~~~     Bitmap 索引
~~~     mmap(内存文件映射方式)
~~~     查询结果的中间缓存
二、数据聚合
### --- 数据预聚合

~~~     Druid通过一个roll-up的处理,将原始数据在注入的时候就进行汇总处理
~~~     Roll-up可以压缩我们需要保存的数据量
~~~     Druid会把选定的相同维度的数据进行聚合操作,可减少存储的大小
~~~     Druid可以通过 queryGranularity 来控制注入数据的粒度。 
~~~     最小的queryGranularity 是 millisecond(毫秒级)
三、Roll-up聚合前:
time APPKey area value
2020-10-05 10:00:00 areakey1 Beijing 1
2020-10-05 10:30:00 areakey1 Beijing 1
2020-10-05 11:00:00 areakey1 Beijing 1
2020-10-05 11:00:00 areakey1 Beijing 2
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yanqi_vip

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值