You are climbing a stair case. It takes n steps to reach to the top.
Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?
public class Solution {
/*The bottom-up recursive*/
public int climbStairs(int n) {
if(n==0)return 0;
if(n==1)return 1;
if(n==2)return 2;
int oneToEnd=1;
int twoToEnd=2;
int all=0;
for(int i=2;i<n;i++){
all=oneToEnd+twoToEnd;
oneToEnd=twoToEnd;
twoToEnd=all;
}
return all;
}
}
public class Solution {
public int climbStairs(int n) {
int[] t= new int[n+1]; // should be one larger, and the initial value of t[n] is 0
return countStep(n,t);
}
public int countStep(int n,int[] t){
if(n==0)t[0]=0;
if(n==1)t[1]=1;
if(n==2)t[2]=2;
/*T[n] does not need to be computed again*/
else if(n>=3&&t[n]==0)t[n]=countStep(n-2,t)+countStep(n-1,t);
return t[n];
}
}
DP问题的特点:
1.大问题的子问题之间是相互关联的。
2.不用递归,用非递归算法,把子问题的答案记录在一个表内。
思路主要有两个;
1 bottom-up : 用iterative的方法来计算每一个小问题的答案,需要的子问题有几个,我们的表就有多大。
2 up-bottom: 用 recursive 的方法,这个问题之前有几个小问题,就需要多大的表,当子问题的结果以求出的时候,就不需要再递归了。
动态规划问题的重点就是子问题的划分。