特征提取
yansmile1
这个作者很懒,什么都没留下…
展开
-
OpenCV特征点检测算法对比
识别算法概述:SIFT/SURF基于灰度图,一、首先建立图像金字塔,形成三维的图像空间,通过Hessian矩阵获取每一层的局部极大值,然后进行在极值点周围26个点进行NMS,从而得到粗略的特征点,再使用二次插值法得到精确特征点所在的层(尺度),即完成了尺度不变。 二、在特征点选取一个与尺度相应的邻域,求出主方向,其中SIFT采用在一个正方形邻域内统计所有点的梯度方向转载 2015-12-10 09:54:35 · 1150 阅读 · 0 评论 -
特征提取代码总结
来自http://download.csdn.net/source/3208155#acomment特征提取代码总结颜色提取Ø 颜色直方图提取:Code: #include #include #include using namespace std; int main( int argc, char** argv转载 2015-12-08 17:07:33 · 886 阅读 · 0 评论 -
PCA实现步骤及其与opencv中PCA实现方式的对比
PCA(Principal Components Analysis,中文名叫主成分分析,是数据降维很常用的算法。按照书上的说法是:寻找最小均方意义下,最能代表原始数据的投影方法。PCA的一个经典应用就是人脸识别,感兴趣的可以在网上搜eigenface。 PCA的主要思想是寻找到数据的主轴方向,由主轴构成一个新的坐标系,这里的维数可以比原维数低,然后数据由原坐标系向新的坐标系投影,这个转载 2015-12-08 16:29:05 · 1227 阅读 · 0 评论 -
opencv 轮廓的凸包,凸缺陷
代码:[cpp] view plaincopy#include #include #include #include #include using namespace std; int main() { IplImage *src = cvLoadImage("f:\\转载 2016-01-05 20:35:54 · 3652 阅读 · 0 评论 -
opencv 轮廓的长度,面积,外接矩形(平行坐标轴),处接最小矩形,处接圆 , 椭圆
#include #include #include #include using namespace std; int main() { IplImage *src = cvLoadImage("f:\\images\\test2.bmp",CV_LOAD_IMAGE_GRAYSCALE); CvMemStorage转载 2016-01-05 20:34:52 · 3104 阅读 · 0 评论 -
学习OpenCV范例(十九)——轮廓提取和形状描述符
本范例主要介绍了如何提取轮廓和用一些形状描述符对轮廓进行表述,轮廓提取函数涉及到的参数很多,没有经常用到它的话,对参数的了解就不会太深刻,这里也按照本人搜索出来的一些资料进行总结,希望对大家有用。1、代码实现本代码实现了多个功能创建了三个滑动条:第一个滑动条表示状态描述符,分别表示为:0:多边形近似1:外接矩形2:外接圆3:力矩转载 2015-12-11 11:22:46 · 4630 阅读 · 0 评论 -
特征点检测学习_2(surf算法)
特征点检测学习_2(surf算法) 在上篇博客特征点检测学习_1(sift算法) 中简单介绍了经典的sift算法,sift算法比较稳定,检测到的特征点也比较多,其最大的确定是计算复杂度较高。后面有不少学者对其进行了改进,其中比较出名的就是本文要介绍的surf算法,surf的中文意思为快速鲁棒特征。本文不是专门介绍surf所有理论(最好的理论是作者的论文)的,只是对surf算法转载 2015-12-11 09:22:28 · 620 阅读 · 0 评论 -
opencv提供了多少个特征点的descriptor?
我知道 OpenCV 提供了10种特征检测方法:"FAST" – FastFeatureDetector"STAR" – StarFeatureDetector"SIFT" – SIFT (nonfree module)"SURF" – SURF (nonfree module)"ORB" – ORB"MSER" – MSER"GFTT" – GoodFeaturesToTrackDete转载 2015-12-10 10:40:05 · 1023 阅读 · 0 评论 -
特征描述子匹配公用接口
OpenCV封装了一些特征描述子匹配算法,使得用户能够解决该问题时候方便使用各种算法。这章用来计算的描述子匹配被表达成一个高维空间的向量 vector.所有实现 vector 特征描述子子提取的部分继承了 DescriptorExtractor 接口.DMatchclass DMatch用于匹配特征关键点的特征描述子的类:查询特征描述子索引, 特征描述子索引, 训练图像索引转载 2015-12-10 10:45:50 · 743 阅读 · 0 评论 -
OpenCV成长之路(8):直线、轮廓的提取与描述
基于内容的图像分析的重点是提取出图像中具有代表性的特征,而线条、轮廓、块往往是最能体现特征的几个元素,这篇文章就针对于这几个重要的图像特征,研究它们在OpenCV中的用法,以及做一些简单的基础应用。一、Canny检测轮廓在上一篇文章中有提到sobel边缘检测,并重写了soble的C++代码让其与matlab中算法效果一致,而soble边缘检测是基于单一阈值的,我们不能兼顾到低阈值的转载 2015-12-10 10:16:37 · 578 阅读 · 0 评论 -
opencv源码解析之(6):hog源码分析
一、网上一些参考资料 在博客目标检测学习_1(用opencv自带hog实现行人检测) 中已经使用了opencv自带的函数detectMultiScale()实现了对行人的检测,当然了,该算法采用的是hog算法,那么hog算法是怎样实现的呢?这一节就来简单分析一下opencv中自带 hog源码。 网上也有不少网友对opencv中的hog源码进行了分析,很不错,看了转载 2015-12-10 09:57:51 · 756 阅读 · 0 评论 -
我的OpenCV学习笔记(20):提取元素的轮廓及形状描述子
先看提取轮廓的代码:[cpp] view plaincopyMat image = imread("D:/picture/images/binaryGroup.bmp",0); if(!image.data) return -1; imshow("源图像",image); //获取轮廓 std::vect转载 2015-12-09 11:09:20 · 1509 阅读 · 0 评论