【算法-快排】

定义

快速排序(Quick Sort)是一种基于分治思想的高效排序算法。它通过选择一个“基准”元素(pivot),将数组划分为两部分:一部分比基准小,另一部分比基准大,然后递归地对这两部分进行排序。

步骤

  • 选择基准(Pivot Selection):从数组中选择一个元素作为基准。通常选择第一个元素、最后一个元素、或中间元素。
  • 分区(Partitioning):将数组划分为两个部分,使得左边部分的所有元素都小于或等于基准,右边部分的所有元素都大于或等于基准。
  • 递归排序(Recursive Sorting):递归地对左右两部分进行快速排序,直到每个部分只有一个元素或为空。

代码

public class QuickSort {

    // 主函数,用于测试快速排序
    public static void main(String[] args) {
        int[] array = {38, 27, 43, 3, 9, 82, 10};
        quickSort(array, 0, array.length - 1);
        
        // 输出排序后的数组
        System.out.println("排序后的数组:");
        for (int i = 0; i < array.length; i++) {
            System.out.print(array[i] + " ");
        }
    }

    // 快速排序的主函数
    public static void quickSort(int[] array, int low, int high) {
        if (low < high) {
            // 找到基准元素的正确位置
            int pivotIndex = partition(array, low, high);
            
            // 递归排序左右部分
            quickSort(array, low, pivotIndex - 1); // 对基准左侧部分排序
            quickSort(array, pivotIndex + 1, high); // 对基准右侧部分排序
        }
    }

    // 分区函数
    public static int partition(int[] array, int low, int high) {
        // 选择最右边的元素作为基准
        int pivot = array[high];
        int i = low - 1; // i表示小于基准的元素的边界
        
        for (int j = low; j < high; j++) {
            // 如果当前元素小于或等于基准
            if (array[j] <= pivot) {
                i++;
                // 交换array[i]和array[j]
                int temp = array[i];
                array[i] = array[j];
                array[j] = temp;
            }
        }
        
        // 将基准元素放到正确位置(i+1位置)
        int temp = array[i + 1];
        array[i + 1] = array[high];
        array[high] = temp;

        return i + 1; // 返回基准元素的位置
    }
}

分析

  • 选择基准元素:
    这里我们选择数组的最后一个元素 array[high] 作为基准元素(pivot)。
  • 分区(Partitioning):
    我们使用两个指针 i 和 j 来实现分区过程。i 用来标记小于基准元素的元素边界,j 用来遍历整个数组。
    如果 array[j] 小于或等于基准元素,那么我们将 array[j] 和 array[i+1] 交换位置,并将 i 增加1。
    最后,将基准元素 array[high] 放到它的正确位置(即 i+1 位置)。
  • 递归排序:
    使用基准元素将数组分成两部分,然后递归地对左右两部分进行快速排序。

特点

  • 时间复杂度:
    最佳情况:O(n log n)(当每次选择的基准都能将数组平分时)。
    平均情况:O(n log n)。
    最差情况:O(n²)(当数组已经有序或逆序时,总是选择最大或最小元素为基准)。
  • 空间复杂度:O(log n)(递归调用栈的空间)。
  • 不稳定性:快速排序是不稳定的排序算法,因为相等元素的相对顺序可能会发生改变。

总结

快速排序在多数情况下都非常高效,特别适合处理大规模数据。它的平均时间复杂度为 O(n log n),但在最差情况下会退化为 O(n²)。为了避免最坏情况,可以随机选择基准或采用“三数取中”法来选择基准元素。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值