目录
背景
2024年10月11号,我感觉按照目前的学习方式(思维导图+博客+画图+写代码)去学习不高效,没有学习乐趣,于是请教米老师如何学习。老师再次强调科学学习的概念,根据“公理+逻辑”的原则去学习,一定要避免填鸭(没有道理地接受),方式之一就是不断提问题,而且是回溯式提问题,直到问到我能证明的公理为止。在这个过程中去体会学习乐趣,逐渐形成学习内动力。
为了让我对提问题和如何学习有直观感受,米老师提问编程的基本逻辑是什么?面向对象的基本逻辑是什么?程序设计的基本公理是什么?面向对象的基本公理是什么?面向对象编程与过程式编程的关系?面对这些编程基础问题,我都回答不出来。米老师说,基础不牢,地动山摇,对基础内容都没有清晰地认识,怎么可能学习好进阶的内容呢。根据“公理+逻辑”的原则去学习,才能知道自己什么情况下对,什么情况下不对,还有什么情况下不知道对不对。这样学习才不会人云亦云,产生混乱感。
米老师让我思考为什么跟别人学习如何证明定理要远比使用定理更有意义。按照老师的学习方式和学习标准(不是知道是什么,而是知道为什么是什么;不是知道有什么,而是知道为什么有什么)实践了几天后,目前有以下收获。
为什么跟别人学习
这里的“跟”有两种意思,一是社交化学习,二是向高人学习。
社交化可以体验到强烈的互动感和高效的学习效果。人与人之间的交流能够产生独特的感受和体验,这是单纯阅读或听课无法完全获得的。通过互动,我们可以调动学习积极性,加深对学习内容的思考和理解。
社交化学习还可以增强自信心。在与他人交往中,如果我们能够自信地表达自己的想法和情感,展现出自己的优势和特点,会更容易得到他人的认可和赞扬,从而增强自信心。
向高人学习可以增加连接,打开视野。人与人之间的认知和思维差异巨大,通过与不同的人深度接触和了解,我们可以将好的部分融入到自己的认知体系中,从而提升自己的认知水平和能力。
向高人学习能够唤醒和激发自己更好的一面。当我们看到自己敬佩的人时,会激发出对自我成长的希望和期待,看到自己生命中更多的可能性。
最后,跟别人学习的方法和技巧也非常重要。例如,使用间隔重复技术、思维导图、思想上移(文字总结)、行动下移(实践优化)等方法,可以帮助我们更有效地吸收和内化知识。通过提问、讨论和实践,我们可以将学到的知识转化为自己的能力和技能。
什么是高人,如何判断
高人定义
能力和成就远超一般的人
如何判断一个人的能力?
- 自律:自律的人能够摒弃杂念,专注于目标,不断寻求突破和进步。
- 执行力:执行力强的人能够迅速将想法转化为行动,不拖延,是判断其能力的重要标志。
- 谈吐和表达:厉害的人表达清晰,逻辑严谨,能够客观分析事物。
- 自信:自信的人能够在任何情况下保持冷静和稳定,是判断其能力的重要标志。
- 分析和解决问题的能力:厉害的人能够冷静分析问题并提出解决方案,是判断其能力的重要方面。
- 说话的底气:有本事的人说话有分寸,能够在任何时候保持冷静和淡定。
- 办事的效率:高效完成任务的人能够在工作中游刃有余,是判断其能力的重要标志。
如何考量一个人的成就?
考量一个人的成就主要可以从以下几个方面进行评估:财富、健康、关系网络、自我意识、成就感和激情、智慧、积极的心态、认真的工作态度、坚韧不拔的毅力、卓越的领导力、强烈的求知欲和积极乐观的心态。
- 财富虽然不是衡量成功的唯一因素,但它通常是成功的关键指标之一。财富可以提供时间、智慧、健康和自由,为个人创造更多机会,使生活更加丰富多彩。
- 健康是人生中最重要的财富之一。成功的人们通常非常注重身体健康,通过规律锻炼和良好休息来保持精力充沛,以应对各种挑战。
- 关系网络在当今社会也非常重要。建立广泛的社交网络可以获得他人的帮助和支持,正确处理人际关系还能带来更多事业机会。
- 自我意识和成就感也是成功的重要因素。了解自己、知道自己的长处和短处,并不断学习和成长,同时通过实现目标获得成就感,可以激励人们更加努力工作。
- 激情和智慧同样重要。成功人士往往对自己的工作或兴趣充满热情,能够全身心投入,而智慧则帮助他们更好地掌控生活和事业中的挑战。
- 拥有积极的心态和认真的工作态度也是成功的关键。积极的心态可以帮助人们更快地从困难中恢复,而认真的工作态度则能提高工作效率和任务完成质量1。
此外,坚韧不拔的毅力、卓越的领导力、强烈的求知欲和积极乐观的心态也是成功人士的共同特质。这些特质帮助他们面对困难和挑战,不断学习和成长,最终取得成功
只知道使用定理的局限性
只知道使用定理,而不理解定理背后的证明和原理,可能带来一些问题和限制。虽然定理提供了现成的工具和方法来解决特定问题,但如果仅仅停留在“使用”层面,而不深入了解“证明”,可能会遇到以下问题:
1. 缺乏灵活性和适应性
当你只会使用定理时,如果遇到问题稍微有所变化或超出定理的适用范围,就可能无从下手。定理的证明过程能够揭示该定理成立的前提和条件,这让你理解何时该定理可用,何时不可用。如果缺乏这种理解,你可能难以应对变化或扩展现有问题。
2. 无法创新或拓展新方法
定理证明往往提供了思路和逻辑推导的路径,能够启发更复杂问题的解决方法。如果只会套用现成的定理,思维会局限于已有的框架中,而缺乏证明过程的理解往往限制了你对新问题的探索能力,尤其在研究或工作中需要创新时,这种局限性会更明显。
3. 容易误用或误解定理
如果只知道如何使用定理,而不明白其背后的逻辑推导,很可能会误用定理。例如,你可能会忽视定理的适用条件,从而在不满足这些条件的情况下盲目使用定理,导致错误的结论。而理解定理的证明可以帮助你更清楚地判断何时定理适用,何时不适用。
4. 难以推理和分析复杂问题
许多数学问题和应用中的复杂问题并不能简单地通过单一的定理解决。它们需要将多个定理结合起来,甚至需要自行推导出新的结论。如果不懂定理的证明过程,就会缺乏对其推理步骤的理解,导致难以构建复杂的逻辑链条和分析能力。
5. 学习深度不足
数学、物理或计算机科学等领域的深度学习不仅仅是定理的使用,更重要的是对概念的深刻理解。证明定理是深入掌握该领域知识的关键。通过证明,学习者能够加深对相关概念的理解,增强数学素养。而单纯地使用定理,可能停留在表面,难以深入思考背后的本质问题。
6. 影响学习效果
定理的证明过程通常包含了很多推理技巧和思想方法。通过学习证明,可以掌握这些推理技巧,提升逻辑推理能力,进而在面对其他未见过的问题时,可以灵活运用。这不仅有助于解决实际问题,还能提高学习生活中的应变能力。如果只会使用定理,学习效果将大打折扣。
7. 缺少对知识结构的整体把握
证明定理可以帮助你理解学科中不同定理之间的联系。定理通常不是孤立的,而是相互依赖、相互推导的。如果只会使用定理,很难看到这些定理是如何从基本原理推导而来的,也无法看到不同知识点之间的内在关联。掌握证明则能更好地构建和理解知识体系。
证明定理的意义
学习如何证明定理比仅仅使用定理更有意义,原因在于通过学习证明,能够深入理解数学的逻辑本质,培养严谨的思维方式,并提高解决问题的能力。以下是具体原因。
1. 深刻理解定理
证证明定理的过程使得你不仅仅知道定理的结果,还能够理解它背后的原理和推理过程,深入理解相关概念。定理的证明通常会揭示:
- 定理的假设条件为何是必需的;
- 结论的推导逻辑;
- 不同数学对象之间的关系。
通过证明,会更深刻地理解定理适用的范围,知道它是如何从基本概念推导出来的,而不是把它当作一个孤立的结果来机械地使用。
2. 培养严谨的逻辑推理能力
证明定理是一种逻辑训练。每一步推导都需要合理且严密,不允许跳跃思维或含糊的表达,避免错误的推理和结论。这种训练有助于:
- 提升逻辑推理的严谨性;
- 学会如何分解复杂问题,找到关键步骤;
- 养成对细节敏感、注重验证和推敲的习惯。
逻辑推理能力不仅仅在数学中重要,在解决任何复杂问题时,它都是一个核心技能。
3. 提高问题的归纳和演绎能力
通过证明定理,你会发现数学定理通常是基于简单的基本事实或更广泛的公理体系推导出来的。证明过程让你掌握如何从已知信息(公理、假设)推导出未知的结论。这种演绎推理不仅仅在数学中有用,在科学、工程和其他严谨的学科中也至关重要。
同时,证明过程中还会学到归纳推理,即如何从特殊的例子、模式中总结出更普遍的结论。这对于探索新知识和发现规律非常有帮助。
4. 应对未见问题的能力
如果你只会使用定理,那么你只在定理适用的范围内解决问题;而当遇到没有现成定理可以直接套用的问题时,你可能束手无策。通过学习如何证明定理,会培养出一种构建性思维,知道如何从基本原理和假设推导出结论。这使我们能够面对更复杂的问题,甚至是全新的问题时,拥有自信和能力去探索解决方案。
5. 数学的灵活运用
证明定理可以让你理解定理的边界条件以及它们在不同上下文中的灵活应用。你不仅仅知道“定理A可以在情况X使用”,而是知道为什么定理A在X中适用,在Y中不适用,甚至还能创造性地修改定理或其应用来处理更复杂的情况。
6. 构建系统的知识体系
通过证明,可以将不同的知识联系起来,形成一个逻辑严密的知识网络。这种系统化的知识体系有助于我们在学习和应用中更加得心应手。
总结
定理的证明过程常常包含了许多精妙的数学技巧和思想,而这些技巧和思想远比定理本身的结果更为宝贵。通过学习如何证明定理,你不仅仅掌握了数学工具,还学会了如何发现问题、分析问题和解决问题的思维方式。这种深度的思维训练能够让你在各种领域中都更加从容自信地应对挑战。而且证明过程让我们接触到数学家们解决问题的策略,甚至能激发我们对数学的热情和创造力。因此,学习如何证明定理远比仅仅使用定理更有意义。
问题集合
公理和逻辑的区别
公理是不证自明的基本事实;而逻辑则需要通过推理来证明。
公理和定理的区别
公理是不证自明的基本事实;定理是在一定条件下,由公理推导证明出来的正确的结论
常用的逻辑推理有哪些
演绎推理
归纳推理
类比推理
溯因推理
归纳统计推理......