【自由能原理:如何教培养皿中的“大脑“玩游戏? 关键字摘取】

“缸中之脑”是世界上著名的思想实验,由这个实验衍生出的电影起码有 6 个,比如《黑客帝国》《盗梦空间》《源代码》《飞出个未来》等。

这个是实验室这样的:假设在你睡觉的时候,有个疯子科学家悄无声息地把你的大脑从头颅中取出,放入培养皿,然后接入计算机,用计算机模拟出五感和所有真实世界才有的刺激。这种模拟逼真到当你的大脑醒来时,都意识不到自己被当作实验品了。你还像从前一样,每天起床进行日常生活。

在这样的前提假设下,有一个富有哲学味道的问题,那就是:你怎么证明自己现在不处于“缸中之脑”的状态呢?

实际上,在这个思想实验中,当事人是没法靠自己完成证实的。想要完成证明,只有一种可能,就是由另外一个维度的生物,尤其是设计计算机程序的那个生物看着缸中之脑,记录它产生的变化。然后和缸中之脑做好约定,把将要发生的事情提前告诉它,然后在时间到了的时候,把事件和感觉输入给当事人。只有这样,才能让当事人确认自己已经在缸中了。

最近,澳大利亚的一家脑科学公司 Cortical Labs 的科学家就当了一次高维度的生物,制造了一个缸中之脑。准确地说,是制造了培养皿中的脑,并且教会了它玩乒乓球游戏。我们就暂且称之为实现了“盘中之脑”吧。

对于那些脑细胞而言,它们的全部世界意义就是如何玩乒乓球游戏,它们可能天生就认为自己是球拍,生命的意义就在于击中球。

如何打造“盘中之脑”?

科学家们一共做了好几个盘中之脑。一个典型的盘中之脑大约有 80 - 100 万个神经元。这个数量大约是人脑神经元规模的十万分之一,和昆虫大脑的规模类似。

不过,为了避免伦理争议,他们使用的不是人脑神经元,而是由两部分组成的,一部分是人类干细胞诱导分化成的神经元,还有一部分神经元直接使用了小鼠胚胎的脑神经。

在神经元下面,密密麻麻地排布着由硅芯片打造的电极,用来给神经元提供外部电刺激,同时也能接收神经元本身的放电。通过这种方式,把电信号的输入和输出在神经元和计算机之间传递。

什么是自由能原理?

既然是训练,就要有奖惩。动作正确就要奖励,动作错误就要惩罚。可是一堆神经元在培养皿中,哪怕我们可以用电极给它们刺激,但怎么才能告诉它们什么是正确,什么又是错误呢?

这就要说到这个实验依据的核心理论了——自由能原理(Free Energy Principle)。

这个理论是英国神经生物学大牛卡尔·弗里斯顿(Karl Friston)提出来的。它描述的是神经元生成决策的底层逻辑。虽然它在生物学上的争议比较大,但在今天的计算机应用中,很多人工智能算法已经把自由能原理拿来用了,训练效果还很好。所以,看上去这个理论是非常有希望获得一个诺贝尔奖的。

假如我们有机会把两个结果都对应到神经元的放电强度上,那么两次放电的强度之差就是自由能,而这个强度差是自动地倾向于尽可能小的。换句话说,当一个“意外”出现以后,大脑并不喜欢预期和实际相差过多。

如何训练“盘中之脑”的行为?

盘中之脑和用芯片做出的人工智能有什么区别呢?区别还挺大的。对于学会玩乒乓球游戏这个任务来说,盘中之脑只用了 5 分钟;而机器学习需要 90 分钟,效率相差了 18 倍。

这个差距其实也提示了我们,硅芯片和冯·诺依曼计算机结构可能在类似神经网络的算法上,和真正的神经工作机制有着天差地别的性能差距。但这个差距到底是怎么产生的,现在还没有人研究清楚,只能靠猜。

缸中之脑让人们对哲学问题无限遐想,而今天介绍的盘中之脑,让我们看到了真正的神经生物芯片的无限前景。

结论

1.自由能原理描述的是神经元生成决策的底层逻辑。虽然在生物学上争议较大,但很多人工智能算法已经用到了它,训练效果还很好。这是一个非常有机会获得诺贝尔奖的理论。
2. 硅芯片和冯.诺依曼计算机结构可能在类似神经网络的算法上,和真正的神经工作机制有着天差地别的性能差距。
3.缸中之脑让人们对哲学问题无限遐想,而盘中之脑的实验,则让我们看到了真正的神经生物芯片的无限前景。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值