如果一个命题已经简单到不能再简单,无法继续分解了,我们把这种命题称为简单命题。在逻辑学中,通常用字母P,Q,R,S这样的逻辑符号来代表它们。如果命题的真值为真,我们就会用字母T来表示真。这样做有两个好处,一个是简洁方便;二来是这些逻辑符号没有二义性,也就是说大家不会因为对自然语句理解不同而产生不同的看法。
命题的非运算
简单来说,如果P为真,则~P为假;P为假,则~P为真。
这样看起来,用逻辑符号做非运算是很容易的事情,但是在自然语言中否定一个命题,是非常容易写错的。比如“所有的人都会死”这个命题,它的否定不是“所有的人都不会死”,而是“并非所有人都会死”,也就是说只要找到一个不死的人,就可以否定“所有的人都会死”这个命题。
由于非运算的这种特点,让证实和证伪一件事的难度变得完全不对等。比如在科学上我们要证实一个结论,需要让所有的例子都符合这个结论,但是要证伪它,只要找到一个反例就可以了。在司法上,要证明一个人犯罪了,需要所有的证据都指向这个结论;要给他脱罪,只需要找出证据链中的一个破绽就可以了。
命题的与运算
在逻辑学中,一些词的含义和生活中略有不同。在自然语言中,很多连接词,比如“并且”、“还有”、“而且”等,它们所连接的陈述句,都表示与运算。这些很好理解。但是需要指出的是,我们通常觉得有否定含义,或者转折含义的连接词,其实所对应的逻辑关系也是与关系。比如我们说,“小常考上了研究生,但是小梅却落榜了”。在这句话中,虽然用了“但是”这个转折词,但它的含义是前后两个命题所说的事情都发生了,它其实是“并且”的意思。
命题的或运算
但是在下面两个例子中,“或者”的含义就不是逻辑操作中“或”的意思了。
例1,小常或者小梅都可以帮你打开门。
这句话想表达的意思是,小常和小梅都可以给你开门,这时“或者”的含义反而和前面讲到的“与”关系是一致的。
例2,某公司对于节假日值班的员工做了这样的补偿规定,可以调休两天,或者拿1000元的奖金。
显然,这家公司的规定是,员工可以在两天休假或者1000元中二选一,但是不能同时选择这两项,这和逻辑学上的“或”操作意思完全不同。这种二选一的操作在逻辑上也有一个专门的名称,叫做异或,我们在后面会讲到。
总之,当人们说“或者”的时候,我们要特别注意,分清楚他们在逻辑上是指与关系、或关系,还是异或关系。
可以直接使用的结论
关于与运算,有两个结论你可以直接记住。
第一,一个命题和它的否命题的合取,其真值永远是假的。
第二个结论是,P和一切真的命题合取之后的真伪,就取决于P本身。
关于或操作,也有两个重要的结论。
第一个结论是,一个命题和它的否命题做或操作,结果一定为真,即P∨~P=真。
第二个结论是,命题P和任何假的命题做或操作,结果取决于P本身的真伪,即P∨假=P。也就是说,在析取关系中,不管有多少命题为假,只要最后有一个命题为真,整个复合命题的结果都为真。
总结
1、非运算会把一个命题的含义完全反过来,这样原来真值是真的命题就变成假的,真值是假的命题就变成真
的了。
2、在科学上我们要证实一个结论,需要让所有的例子都符合这个结论,但是要证伪它,只要找到一个反例就
可以了。
3、当人们说“或者”的时候,要特别注意,分清楚他们在逻辑上是指与关系、或关系,还是异或关系。