第一章 人工智能概述与思想基础
-
人工智能定义
- 罗素教授将AI定义为“对从环境中接受感知并执行行动的智能体的研究”,涵盖机器智能与生物智能。
- 智能是系统通过信息获取与加工实现演化的能力,AI旨在探索这一能力的实现机制。
-
历史发展与学科交叉
- 经历早期探索(符号主义)、专家系统兴起、神经网络回归、统计机器学习复兴、深度学习突破等阶段。
- 融合哲学、数学、经济学、神经科学、心理学等多学科思想,形成跨领域研究范式。
-
方法论争议
- 理论基础与工程实践的关系:强调“技术先于科学”,即新方法推动理论解释,而非依赖现有理论指导。
第二章 问题求解与搜索基础
-
问题形式化
- 状态空间、初始状态、目标状态、动作集、转移模型、代价函数构成搜索问题。
- 解为初始状态到目标的路径,最优解为代价最小的路径。
-
经典搜索算法
- 无信息搜索:广度优先、深度优先、一致代价(Dijkstra算法)。
- 启发式搜索:A算法(f(n)=g(n)+h(n))、贪心最佳优先、加权A(平衡最优性与效率)。
- 局部搜索:爬山法、模拟退火、遗传算法,适用于大规模状态空间优化。
-
复杂场景处理
- 在线搜索:动态环境中交替执行动作与计算(如机器人实时路径规划)。
- 双向搜索:同时从初始状态和目标反向扩展,降低时间复杂度。
第三章 对抗环境下的博弈与决策
-
极小化极大算法
- 构建博弈树,计算每个节点的极小化极大值,Max选择最大化收益,Min选择最小化对手收益。
- 剪枝优化:Alpha-Beta剪枝减少无效节点计算,提升效率。
-
蒙特卡洛树搜索(MCTS)
- 四步迭代:选择(UCT策略)、扩展、模拟(随机rollout)、反向传播更新节点统计量。
- 应用场景:围棋(AlphaGo)、即时战略游戏(星际争霸)等非确定性博弈。
-
随机博弈与部分可观测博弈
- 期望极小化极大算法:处理骰子等随机因素,计算期望效用。
- 信念状态推理:四国军棋等不完全信息博弈需推测对手隐藏信息。
第四章 知识表示与逻辑推理
-
命题逻辑与一阶逻辑
- 命题逻辑:原子命题、合取/析取式,适用于有限状态描述。
- 一阶逻辑:引入量词(∀, ∃)、谓词、函数,支持对象关系建模(如“所有学生都喜欢某课程”)。
-
推理算法
- 前向链:从已知事实触发规则推导新事实,适用于数据库查询。
- 反向链:从目标反向寻找支持证据,用于专家系统诊断。
- 归结法:通过子句归结证明矛盾,实现反演完备性。
-
实际应用
- Wumpus世界:通过逻辑规则(如微风感知与无底洞关系)推导安全路径。
- 动态贝叶斯网络:处理时间序列中的不确定性推理。
第五章 约束满足问题(CSP)
-
形式化与求解
- 变量、值域、约束三元组定义CSP,解为满足所有约束的赋值。
- 回溯搜索:结合变量选择启发式(如最小剩余值)、值排序优化(最少约束值)。
-
一致性传播
- 弧一致性:删除变量域中违反二元约束的值。
- 路径一致性:确保每对变量通过中间变量满足约束(如地图着色问题)。
-
结构分解
- 树结构CSP:通过拓扑排序实现线性时间求解。
- 割集调整:将复杂图分解为树与割集,降低问题复杂度。
第六章 规划与自动推理
-
经典规划模型
- STRIPS语言表示状态、动作前提与效果,生成动作序列达成目标。
- 规划算法:前向状态空间搜索、反向目标回归、启发式规划(如忽略删除列表)。
-
分层任务网络(HTN)
- 将任务分解为子任务,递归生成可行规划(如机器人装配任务分解为抓取、移动、组装)。
-
实时规划挑战
- 部分可观测规划:维护信念状态(如粒子滤波)应对不确定性。
- 多智能体协调:博弈论与合同网协议实现协作(如无人机编队)。
第七章 不确定知识与概率推理
-
贝叶斯网络
- 有向无环图表示变量条件依赖,联合概率分解为局部条件概率乘积。
- 推理算法:变量消元、消息传递(置信传播)、蒙特卡洛采样(MCMC)。
-
动态系统建模
- 隐马尔可夫模型(HMM):状态转移与观测概率建模时间序列(如语音识别)。
- 卡尔曼滤波:线性高斯系统下最优状态估计(如机器人定位)。
-
决策理论与效用
- 期望效用最大化:结合概率与效用函数选择最优动作。
- 影响图:扩展贝叶斯网络包含决策节点与效用节点。
第八章 机器学习基础
-
学习范式
- 监督学习:分类(决策树、SVM)、回归(线性模型、神经网络)。
- 无监督学习:聚类(K-means)、降维(PCA)、生成模型(GAN)。
- 强化学习:Q-learning、策略梯度,通过环境交互优化长期奖励。
-
统计学习理论
- 偏差-方差权衡:模型复杂度与泛化能力平衡。
- 正则化:L1/L2约束防止过拟合,提升模型鲁棒性。
-
特征工程与表示学习
- 手工特征:领域知识驱动(如图像纹理特征)。
- 深度学习:自动特征提取(CNN用于图像,RNN用于序列)。
第九章 深度学习与前沿进展
-
神经网络架构
- 卷积网络(CNN):局部连接、权值共享处理网格数据(图像、语音)。
- 循环网络(RNN):记忆单元(LSTM/GRU)建模时序依赖(文本、视频)。
- Transformer:自注意力机制实现长程依赖捕捉(如BERT、GPT)。
-
强化学习突破
- 深度Q网络(DQN):经验回放与目标网络稳定训练(Atari游戏)。
- 策略优化(PPO):信赖域约束提升训练效率(机器人控制)。
-
多模态与跨领域应用
- 视觉-语言模型:CLIP实现图像与文本语义对齐。
- 因果推理:结合结构方程模型与深度学习探索因果关系。
第四版核心更新亮点
-
新增领域
- 深度学习、多智能体系统、机器人伦理、因果推理等章节大幅扩展。
- 强化学习与元学习(Meta-Learning)内容深度整合。
-
方法论强化
- 强调“智能体”视角贯穿全书,突出环境交互与实时决策。
- 增加对抗样本、可解释性AI、联邦学习等前沿议题。
-
案例与实践
- 更新AlphaZero、自动驾驶、医疗AI等现代应用实例。
- 提供Jupyter Notebook代码示例,结合理论推导与工程实现。
总结
《人工智能:现代方法》第四版构建了从经典理论到前沿技术的完整知识体系,其特色在于:
- 系统性:覆盖搜索、逻辑、规划、学习等核心子领域,形成“全景图”式知识架构。
- 实践性:通过真实案例(如罗马尼亚路径规划、Wumpus世界)连接理论与应用。
- 前瞻性:深度剖析深度学习、多智能体博弈等当代热点,指引未来研究方向。