Celery 异步分布式 171219

celery是Python开发的分布式异步任务调度系统,Celery支持的消息服务有rmq、redis等 

Celery 是一个强大的分布式任务队列,它可以让任务的执行完全脱离主程序,甚至可以被分配到其他主机上运行。我们通常使用它来实现异步任务(async task)和定时任务(crontab)。它的架构组成如下图:


celery由5个主要组件组成: 
producer: 任务发布者, 通过调用API向celery发布任务的程序 
celery beat: 任务调度, 根据配置文件发布定时任务 
worker: 实际执行任务的程序 
broker: 接受任务消息,存入队列再按顺序分发给worker执行 
backend: 存储结果的服务器

Celery 主要包含以下几个模块:

  • 任务模块
    包含异步任务和定时任务。其中,异步任务通常在业务逻辑中被触发并发往任务队列,而定时任务由 Celery Beat 进程周期性地将任务发往任务队列

  • 消息中间件 Broker
    Broker,即为任务调度队列,接收任务生产者发来的消息(即任务),将任务存入队列。Celery 本身不提供队列服务,官方推荐使用 RabbitMQ 和 Redis 等。

  • 任务执行单元 Worker
    Worker 是执行任务的处理单元,它实时监控消息队列,获取队列中调度的任务,并执行它

  • 任务结果存储 Backend
    Backend 用于存储任务的执行结果,以供查询。同消息中间件一样,存储也可使用 RabbitMQ, Redis 和 MongoDB 等。

异步任务:

使用 Celery 实现异步任务主要包含三个步骤:

  1. 创建一个 Celery 实例

  2. 启动 Celery Worker

  3. 应用程序调用异步任务

在运行下面的例子之前,请确保 redis 已正确安装,并开启 redis 服务,当然,celery 也是要安装的。可以使用下面的命令来安装 celery 及相关依赖:

pip install 'celery[redis]'
# -*- coding: utf-8 -*-

import time
from celery import Celery

broker = 'redis://127.0.0.1:6379'
backend = 'redis://127.0.0.1:6379/0'

app = Celery('my_task', broker=broker, backend=backend)

@app.task
def add(x, y):
    time.sleep(5)     # 模拟耗时操作
    return x + y

将上面的代码保存为文件 tasks.py,做了几件事:

  • 创建了一个 Celery 实例 app,名称为 my_task

  • 指定消息中间件用 redis,URL 为 redis://127.0.0.1:6379

  • 指定存储用 redis,URL 为 redis://127.0.0.1:6379/0

  • 创建了一个 Celery 任务 add,当函数被 @app.task 装饰后,就成为可被 Celery 调度的任务;

启动 Celery Worker

在当前目录,使用如下方式启动 Celery Worker:

$ celery worker -A tasks --loglevel=info

其中:

  • 参数 -A 指定了 Celery 实例的位置,本例是在 tasks.py 中,Celery 会自动在该文件中寻找 Celery 对象实例,当然,我们也可以自己指定,在本例,使用 -A tasks.app

  • 参数 --loglevel 指定了日志级别,默认为 warning,也可以使用 -l info 来表示;

在生产环境中,我们通常会使用 Supervisor 来控制 Celery Worker 进程。

调用任务

现在,我们可以在应用程序中使用 delay() 或 apply_async() 方法来调用任务。

在当前目录打开 Python 控制台,输入以下代码:

>>> from tasks import add
>>> add.delay(2, 8)
<AsyncResult: 2272ddce-8be5-493f-b5ff-35a0d9fe600f>
我们从  tasks.py  文件中导入了  add  任务对象,然后使用  delay()  方法将任务发送到消息中间件(Broker),Celery Worker 进程监控到该任务后,就会进行执行。我们将窗口切换到 Worker 的启动窗口,会看到多了两条日志

INFO/MainProcess] Received task: tasks.add[2272ddce-8be5-493f-b5ff-35a0d9fe600f]
 INFO/PoolWorker-4] Task tasks.add[2272ddce-8be5-493f-b5ff-35a0d9fe600f] succeeded in 5.00642602402s: 10

这说明任务已经被调度并执行成功。

另外,我们如果想获取执行后的结果,可以这样做:

>>> result = add.delay(2, 6)
>>> result.ready()   # 使用 ready() 判断任务是否执行完毕
False
>>> result.ready()
False
>>> result.ready()
True
>>> result.get()     # 使用 get() 获取任务结果
8
在上面,我们是在 Python 的环境中调用任务。事实上,我们通常在应用程序中调用任务。比如,将下面的代码保存为  client.py :

from tasks import add

# 异步任务
add.delay(2, 8)

print 'hello world'

运行命令 $ python client.py,可以看到,虽然任务函数 add 需要等待 5 秒才返回执行结果,但由于它是一个异步任务,不会阻塞当前的主程序,因此主程序会往下执行 print 语句,打印出结果。

使用配置

在上面的例子中,我们直接把 Broker 和 Backend 的配置写在了程序当中,更好的做法是将配置项统一写入到一个配置文件中,通常我们将该文件命名为 celeryconfig.py。Celery 的配置比较多,可以在官方文档查询每个配置项的含义。

下面,我们再看一个例子。项目结构如下:

celery_demo                    # 项目根目录
    ├── celery_app             # 存放 celery 相关文件
    │   ├── __init__.py
    │   ├── celeryconfig.py    # 配置文件
    │   ├── task1.py           # 任务文件 1
    │   └── task2.py           # 任务文件 2
    └── client.py              # 应用程序

__init__.py 代码如下:

# -*- coding: utf-8 -*-

from celery import Celery

app = Celery('demo')                                # 创建 Celery 实例
app.config_from_object('celery_app.celeryconfig')   # 通过 Celery 实例加载配置模块

celeryconfig.py 代码如下:

BROKER_URL = 'redis://127.0.0.1:6379'               # 指定 Broker
CELERY_RESULT_BACKEND = 'redis://127.0.0.1:6379/0'  # 指定 Backend

CELERY_TIMEZONE='Asia/Shanghai'                     # 指定时区,默认是 UTC
# CELERY_TIMEZONE='UTC'                             

CELERY_IMPORTS = (                                  # 指定导入的任务模块
    'celery_app.task1',
    'celery_app.task2'
)

task1.py 代码如下:

import time
from celery_app import app

@app.task
def add(x, y):
    time.sleep(2)
    return x + y

task2.py 代码如下:

import time
from celery_app import app

@app.task
def multiply(x, y):
    time.sleep(2)
    return x * y

client.py 代码如下:

# -*- coding: utf-8 -*-

from celery_app import task1
from celery_app import task2

task1.add.apply_async(args=[2, 8])        # 也可用 task1.add.delay(2, 8)
task2.multiply.apply_async(args=[3, 7])   # 也可用 task2.multiply.delay(3, 7)

print 'hello world'

现在,让我们启动 Celery Worker 进程,在项目的根目录下执行下面命令:

celery_demo $ celery -A celery_app worker --loglevel=info
接着,运行  $ python client.py ,它会发送两个异步任务到 Broker,在 Worker 的窗口我们可以看到如下输出:

INFO/MainProcess] Received task: celery_app.task1.add[9ccffad0-aca4-4875-84ce-0ccfce5a83aa]
[INFO/MainProcess] Received task: celery_app.task2.multiply[64b1f889-c892-4333-bd1d-ac667e677a8a]
[INFO/PoolWorker-3] Task celery_app.task1.add[9ccffad0-aca4-4875-84ce-0ccfce5a83aa] succeeded in 2.00600231002s: 10
[INFO/PoolWorker-4] Task celery_app.task2.multiply[64b1f889-c892-4333-bd1d-ac667e677a8a] succeeded in 2.00601326401s: 21

delay 和 apply_async

在前面的例子中,我们使用 delay() 或 apply_async() 方法来调用任务。事实上,delay 方法封装了 apply_async,如下:

def delay(self, *partial_args, **partial_kwargs):
    """Shortcut to :meth:`apply_async` using star arguments."""
    return self.apply_async(partial_args, partial_kwargs)

也就是说,delay 是使用 apply_async 的快捷方式。apply_async 支持更多的参数,它的一般形式如下:

apply_async(args=(), kwargs={}, route_name=None, **options)

apply_async 常用的参数如下:

  • countdown:指定多少秒后执行任务

task1.apply_async(args=(23), countdown=5) # 5 秒后执行任务
  • eta (estimated time of arrival):指定任务被调度的具体时间,参数类型是 datetime

from datetime import datetime, timedelta

# 当前 UTC 时间再加 10 秒后执行任务
task1.multiply.apply_async(args=[3, 7], eta=datetime.utcnow() + timedelta(seconds=10))
  • expires:任务过期时间,参数类型可以是 int,也可以是 datetime

task1.multiply.apply_async(args=[37], expires=10# 10 秒后过期

更多的参数列表可以在官方文档中查看。

定时任务

Celery 除了可以执行异步任务,也支持执行周期性任务(Periodic Tasks),或者说定时任务。Celery Beat 进程通过读取配置文件的内容,周期性地将定时任务发往任务队列。

让我们看看例子,项目结构如下:

celery_demo                    # 项目根目录
    ├── celery_app             # 存放 celery 相关文件
        ├── __init__.py
        ├── celeryconfig.py    # 配置文件
        ├── task1.py           # 任务文件
        └── task2.py           # 任务文件

__init__.py 代码如下:

# -*- coding: utf-8 -*-

from celery import Celery

app = Celery('demo')
app.config_from_object('celery_app.celeryconfig')

celeryconfig.py 代码如下:

# -*- coding: utf-8 -*-

from datetime import timedelta
from celery.schedules import crontab

# Broker and Backend
BROKER_URL = 'redis://127.0.0.1:6379'
CELERY_RESULT_BACKEND = 'redis://127.0.0.1:6379/0'

# Timezone
CELERY_TIMEZONE='Asia/Shanghai'    # 指定时区,不指定默认为 'UTC'
# CELERY_TIMEZONE='UTC'

# import
CELERY_IMPORTS = (
    'celery_app.task1',
    'celery_app.task2'
)

# schedules
CELERYBEAT_SCHEDULE = {
    'add-every-30-seconds': {
         'task': 'celery_app.task1.add',
         'schedule': timedelta(seconds=30),       # 每 30 秒执行一次
         'args': (5, 8)                           # 任务函数参数
    },
    'multiply-at-some-time': {
        'task': 'celery_app.task2.multiply',
        'schedule': crontab(hour=9, minute=50),   # 每天早上 9 点 50 分执行一次
        'args': (3, 7)                            # 任务函数参数
    }
}

task1.py 代码如下:

import time
from celery_app import app

@app.task
def add(x, y):
    time.sleep(2)
    return x + y

task2.py 代码如下:

import time
from celery_app import app

@app.task
def multiply(x, y):
    time.sleep(2)
    return x * y

现在,让我们启动 Celery Worker 进程,在项目的根目录下执行下面命令:

celery_demo $ celery -A celery_app worker --loglevel=info

接着,启动 Celery Beat 进程,定时将任务发送到 Broker,在项目根目录下执行下面命令:

celery_demo $ celery beat -A celery_app
celery beat v4.0.1 (latentcall) is starting.
__    -    ... __   -        _
LocalTime -> 2016-12-11 09:48:16
Configuration ->
    . broker -> redis://127.0.0.1:6379//
    . loader -> celery.loaders.app.AppLoader
    . scheduler -> celery.beat.PersistentScheduler
    . db -> celerybeat-schedule
    . logfile -> [stderr]@%WARNING
    . maxinterval -> 5.00 minutes (300s)

之后,在 Worker 窗口我们可以看到,任务 task1 每 30 秒执行一次,而 task2 每天早上 9 点 50 分执行一次。

在上面,我们用两个命令启动了 Worker 进程和 Beat 进程,我们也可以将它们放在一个命令中:

$ celery -B -A celery_app worker --loglevel=info

Celery 周期性任务也有多个配置项,可参考官方文档

本文由 funhacks 发表于个人博客,采用 Creative Commons BY-NC-ND 4.0(自由转载-保持署名-非商用-禁止演绎)协议发布。
非商业转载请注明作者及出处。商业转载请联系作者本人。
本文标题为: 异步任务神器 Celery 简明笔记
本文链接为: https://funhacks.net/2016/12/...

参考资料





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值