deeplearning
昵称不火
这个作者很懒,什么都没留下…
展开
-
Sklearn 与 TensorFlow 机器学习实用指南——第十一章总结
Sklearn 与 TensorFlow 机器学习实用指南——第十一章总结梯度消失/爆炸问题非饱和激活函数批量标准化梯度裁剪复用预训练层复用 TensorFlow 模型冻结较低层缓存冻结层调整,删除或替换较高层Model Zoos无监督的预训练更快的优化器动量优化Nesterov 加速梯度AdaGradRMSPropAdam 优化训练稀疏模型学习率调整通过正则化避免过拟合早期停止L1 和 L2 正...原创 2019-01-17 10:48:27 · 537 阅读 · 0 评论 -
Sklearn 与 TensorFlow 机器学习实用指南——第十章总结
Sklearn 与 TensorFlow 机器学习实用指南——第十章总结用 TensorFlow 高级 API 训练 MLP使用普通 TensorFlow 训练 DNN构造阶段执行阶段使用神经网络完整代码习题有了上一章关于tensorflow的基本介绍,本章进入神经网络tensorflow的学习。本章首先介绍了生物神经元,神经元的逻辑计算,感知器,多层感知器与反向传播等基础知识,本文从使用Te...原创 2019-01-16 10:20:09 · 936 阅读 · 0 评论 -
Sklearn 与 TensorFlow 机器学习实用指南——第九章习题答案
Sklearn 与 TensorFlow 机器学习实用指南——第九章习题答案进入该书的第二部分,深度学习与tensorflow,本书的重点不是原理,更重要的是编程实现,所以原理部分已经是言简意赅了,而且第二部分重在tensorflow的学习,所以不做总结,写一些习题。文档地址创建计算图而不是直接执行计算有哪些主要好处? 主要缺点是什么?优点:Tensorflow可以计算梯度(使用反向a...原创 2019-01-15 20:30:54 · 4381 阅读 · 0 评论 -
Sklearn 与 TensorFlow 机器学习实用指南——第十一章习题答案
Sklearn 与 TensorFlow 机器学习实用指南——第十一章习题答案使用 He 初始化随机选择权重,是否可以将所有权重初始化为相同的值?不可以,所有重量都应该独立采样; 他们不应该都具有相同的初始权重。 随机抽样权重的一个重要目标是破坏对称:如果所有权重具有相同的初始值,即使该值不是零,那么对称性也不会被破坏(即,给定层中的所有神经元都是等价的),并且反向传播将无法打破它。也就是说...原创 2019-01-17 14:16:55 · 554 阅读 · 0 评论 -
Sklearn 与 TensorFlow 机器学习实用指南——第十三章总结_卷积神经网络
Sklearn 与 TensorFlow 机器学习实用指南——第十三章总结_卷积神经网络视觉皮层的结构卷积层卷积核/过滤器叠加的多个特征映射TensorFlow 实现内存需求池化层CNN 架构TensorFlow 卷积操作在本章中,我们将介绍 CNN 的来源,构建它们模块的外观以及如何使用 TensorFlow 实现它们。然后我们将介绍一些最好的 CNN 架构。参考地址视觉皮层的结构Davi...原创 2019-01-18 15:19:52 · 1001 阅读 · 0 评论 -
CNN_Mode(ILSVRC)汇总LeNet-5,AlexNet,ZFNet,GoogLeNet,VGGNet,ResNet,SENet
CNN_Mode汇总LeNet-5,AlexNet,GoogLeNet,ResNetLeNet-5(1998)AlexNet(2012)GoogLeNet(2014)ResNet(2015)卷积神经网络在图像领域独领风骚,在ILSVRC 挑战赛中涌现出了许多非常优秀的网络结构,本文将一一介绍,在以后的相关研究中,我们可以使用这些网络的卷积层用来提取特征,加快研究进程。LeNet-5(1998)...原创 2019-01-18 17:05:21 · 818 阅读 · 0 评论 -
Sklearn 与 TensorFlow 机器学习实用指南——第十三章习题答案
Sklearn 与 TensorFlow 机器学习实用指南——第十三章习题答案本文对十三章卷积神经网络的习题部分进行解答。对于图像分类CNN相对于完全连接的DNN有什么优势?由于卷积层仅部分连接,并且因为它大量重用其权重,因此CNN比完全连接的DNN具有更少的参数,这使得训练更快,降低过度拟合的风险,并且需要更少的训练数据。当CNN学会了可以检测特定特征的卷积核时,它可以在图像的任何位...原创 2019-01-20 11:11:30 · 761 阅读 · 0 评论 -
Sklearn 与 TensorFlow 机器学习实用指南——第十五章总结
Sklearn 与 TensorFlow 机器学习实用指南——第十五章总结有效的数据表示用不完整的线性自编码器执行 PCA栈式自编码器(SAE)TensorFlow实现关联权重一次训练一个自编码器无监督预训练使用栈式自编码器降噪自编码(DAE)稀疏自编码器变分自编码器(VAE)其他自编码器自编码器是能够在无监督的情况下学习输入数据的有效表示(叫做编码)的人工神经网络(即,训练集是未标记),即一个...原创 2019-01-22 09:53:57 · 505 阅读 · 0 评论