机器学习
文章平均质量分 66
昵称不火
这个作者很懒,什么都没留下…
展开
-
西瓜书《机器学习》课后编程题答案——3.3
Maching learning机器学习课后编程题答案——3.33.3编程实现对率回归,并给出西瓜数据集3.0α上的结果加载数据Sigmoid 函数低度下降计算权重分类完整程序画出分类后的点3.3编程实现对率回归,并给出西瓜数据集3.0α上的结果本文在参考《机器学习实战》的基础上,利用Python3编写了代码,完成了题目3.3,主要由这几部分组成:加载数据def loadDataSet()...原创 2018-11-26 13:26:18 · 4031 阅读 · 1 评论 -
Sklearn 与 TensorFlow 机器学习实用指南——第十章总结
Sklearn 与 TensorFlow 机器学习实用指南——第十章总结用 TensorFlow 高级 API 训练 MLP使用普通 TensorFlow 训练 DNN构造阶段执行阶段使用神经网络完整代码习题有了上一章关于tensorflow的基本介绍,本章进入神经网络tensorflow的学习。本章首先介绍了生物神经元,神经元的逻辑计算,感知器,多层感知器与反向传播等基础知识,本文从使用Te...原创 2019-01-16 10:20:09 · 936 阅读 · 0 评论 -
Sklearn 与 TensorFlow 机器学习实用指南——第九章习题答案
Sklearn 与 TensorFlow 机器学习实用指南——第九章习题答案进入该书的第二部分,深度学习与tensorflow,本书的重点不是原理,更重要的是编程实现,所以原理部分已经是言简意赅了,而且第二部分重在tensorflow的学习,所以不做总结,写一些习题。文档地址创建计算图而不是直接执行计算有哪些主要好处? 主要缺点是什么?优点:Tensorflow可以计算梯度(使用反向a...原创 2019-01-15 20:30:54 · 4381 阅读 · 0 评论 -
Sklearn 与 TensorFlow 机器学习实用指南——第四章总结
Sklearn 与 TensorFlow 机器学习实用指南——第四章总结线性回归正规方程(The Normal Equation)计算复杂度梯度下降批量梯度下降随机梯度下降小批量梯度下降多项式回归学习曲线线性模型的正则化岭(Ridge)回归Lasso 回归弹性网络(ElasticNet)早期停止法(Early Stopping)逻辑回归概率估计训练和损失函数Softmax 回归习 题本章主要讲解...原创 2019-01-09 22:01:27 · 780 阅读 · 0 评论 -
Sklearn 与 TensorFlow 机器学习实用指南——第十三章习题答案
Sklearn 与 TensorFlow 机器学习实用指南——第十三章习题答案本文对十三章卷积神经网络的习题部分进行解答。对于图像分类CNN相对于完全连接的DNN有什么优势?由于卷积层仅部分连接,并且因为它大量重用其权重,因此CNN比完全连接的DNN具有更少的参数,这使得训练更快,降低过度拟合的风险,并且需要更少的训练数据。当CNN学会了可以检测特定特征的卷积核时,它可以在图像的任何位...原创 2019-01-20 11:11:30 · 761 阅读 · 0 评论 -
Sklearn 与 TensorFlow 机器学习实用指南——第二章总结
Sklearn 与 TensorFlow 机器学习实用指南——第二章总结1.使用真实的数据2.项目概述3.规划问题4.选择性能指标5.核实假设6.快速查看数据结构7.创建测试集合8.数据探索和可视化、发现规律9.为机器学习算法准备数据10.选择并训练模型11.使用交叉验证做更佳的评估12.模型微调13.分析最佳模型和它们的误差14.用测试集评估系统本章主要讲解了一个完整的机器学习项目的构建过程,...原创 2019-01-08 21:49:09 · 454 阅读 · 0 评论 -
CNN_Mode(ILSVRC)汇总LeNet-5,AlexNet,ZFNet,GoogLeNet,VGGNet,ResNet,SENet
CNN_Mode汇总LeNet-5,AlexNet,GoogLeNet,ResNetLeNet-5(1998)AlexNet(2012)GoogLeNet(2014)ResNet(2015)卷积神经网络在图像领域独领风骚,在ILSVRC 挑战赛中涌现出了许多非常优秀的网络结构,本文将一一介绍,在以后的相关研究中,我们可以使用这些网络的卷积层用来提取特征,加快研究进程。LeNet-5(1998)...原创 2019-01-18 17:05:21 · 818 阅读 · 0 评论 -
Sklearn 与 TensorFlow 机器学习实用指南——第八章总结
Sklearn 与 TensorFlow 机器学习实用指南——第八章总结维数灾难降维的主要方法投影(Projection)流形学习主成分分析(PCA)保留(最大)方差主成分(Principle Componets)投影到d维空间使用 Scikit-Learn方差解释率(Explained Variance Ratio)选择正确的维度PCA压缩增量 PCA(Incremental PCA)随机 PC...原创 2019-01-14 10:35:54 · 678 阅读 · 0 评论 -
Sklearn 与 TensorFlow 机器学习实用指南——第十三章总结_卷积神经网络
Sklearn 与 TensorFlow 机器学习实用指南——第十三章总结_卷积神经网络视觉皮层的结构卷积层卷积核/过滤器叠加的多个特征映射TensorFlow 实现内存需求池化层CNN 架构TensorFlow 卷积操作在本章中,我们将介绍 CNN 的来源,构建它们模块的外观以及如何使用 TensorFlow 实现它们。然后我们将介绍一些最好的 CNN 架构。参考地址视觉皮层的结构Davi...原创 2019-01-18 15:19:52 · 1001 阅读 · 0 评论 -
Sklearn 与 TensorFlow 机器学习实用指南——第七章总结
Sklearn 与 TensorFlow 机器学习实用指南——第七章总结投票分类Bagging 和 Pasting在 sklearn 中的 Bagging 和 PastingOut-of-Bag 评价随机森林特征重要度提升(boosting)Adaboost梯度提升Stacking习题本章主要讲解了几种集成方法,包括 bagging, boosting, stacking,和其他一些算法。参考地...原创 2019-01-12 10:45:08 · 736 阅读 · 0 评论 -
Sklearn 与 TensorFlow 机器学习实用指南——第五章总结
Sklearn 与 TensorFlow 机器学习实用指南——第五章总结本章主要介绍了支持向量机及相关内容,软间隔分类,非线性,对偶问题,核函数,SVM回归等等,主要在于代码的编写,公式推导方面不够详细,详细推动可以参考西瓜书,本文就写一下习题。支持向量机背后的基本思想是什么? 支持向量机通过计算wx+b来预测新样本的类别,wx+b=0是决策面,wx+b=1和-1是相互平行的两条直线,到决...原创 2019-01-11 22:08:08 · 456 阅读 · 0 评论 -
Sklearn 与 TensorFlow 机器学习实用指南——第十一章习题答案
Sklearn 与 TensorFlow 机器学习实用指南——第十一章习题答案使用 He 初始化随机选择权重,是否可以将所有权重初始化为相同的值?不可以,所有重量都应该独立采样; 他们不应该都具有相同的初始权重。 随机抽样权重的一个重要目标是破坏对称:如果所有权重具有相同的初始值,即使该值不是零,那么对称性也不会被破坏(即,给定层中的所有神经元都是等价的),并且反向传播将无法打破它。也就是说...原创 2019-01-17 14:16:55 · 554 阅读 · 0 评论 -
Sklearn 与 TensorFlow 机器学习实用指南——第十一章总结
Sklearn 与 TensorFlow 机器学习实用指南——第十一章总结梯度消失/爆炸问题非饱和激活函数批量标准化梯度裁剪复用预训练层复用 TensorFlow 模型冻结较低层缓存冻结层调整,删除或替换较高层Model Zoos无监督的预训练更快的优化器动量优化Nesterov 加速梯度AdaGradRMSPropAdam 优化训练稀疏模型学习率调整通过正则化避免过拟合早期停止L1 和 L2 正...原创 2019-01-17 10:48:27 · 537 阅读 · 0 评论 -
Sklearn 与 TensorFlow 机器学习实用指南——第六章总结
Sklearn 与 TensorFlow 机器学习实用指南——第六章总结CART训练算法计算复杂度基尼不纯度或信息熵正则化超参数回归不稳定性练习本章主要介绍了决策树的相关内容,包含复杂度的计算,基尼不纯度或信息熵,正则化超参数等内容,做简单总结,详细内容查看链接CART训练算法Scikit-Learn 用分裂回归树(Classification And Regression Tree,简称 ...原创 2019-01-11 11:38:54 · 492 阅读 · 0 评论 -
Sklearn 与 TensorFlow 机器学习实用指南——第一章总结
Sklearn 与 TensorFlow 机器学习实用指南——第一章总结机器学习系统的类型监督学习非监督学习机器学习的主要挑战训练数据量不足没有代表性的训练数据低质量数据不相关的特征过拟合训练数据欠拟合训练数据测试和确认习题参考机器学习系统的类型机器学习有多种类型,可以根据如下规则进行分类:是否在人类监督下进行训练(监督,非监督,半监督和强化学习)是否可以动态渐进学习(在线学习 vs 批量...原创 2019-01-05 20:41:41 · 1143 阅读 · 0 评论 -
西瓜书《机器学习》课后编程题答案——3.4
西瓜书《机器学习》课后编程题答案——3.43.4选择两个UCI数据集,比较0折交叉验证法和留一法所估计出的对率回归的错误率.10折交叉验证法数据集留一法分割数据集完整程序10折交叉验证留一法3.4选择两个UCI数据集,比较0折交叉验证法和留一法所估计出的对率回归的错误率.本文在上一篇3.3的基础上主要实现10折交叉验证法和留一法对数据集的划分,逻辑逻辑回归部分代码大多数不变,本文针对改动部分作...原创 2018-11-28 17:16:19 · 2631 阅读 · 1 评论 -
Sklearn 与 TensorFlow 机器学习实用指南——第十五章总结
Sklearn 与 TensorFlow 机器学习实用指南——第十五章总结有效的数据表示用不完整的线性自编码器执行 PCA栈式自编码器(SAE)TensorFlow实现关联权重一次训练一个自编码器无监督预训练使用栈式自编码器降噪自编码(DAE)稀疏自编码器变分自编码器(VAE)其他自编码器自编码器是能够在无监督的情况下学习输入数据的有效表示(叫做编码)的人工神经网络(即,训练集是未标记),即一个...原创 2019-01-22 09:53:57 · 505 阅读 · 0 评论