Element简
码龄7年
关注
提问 私信
  • 博客:111,007
    111,007
    总访问量
  • 83
    原创
  • 1,739,414
    排名
  • 587
    粉丝
  • 7
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2017-06-21
博客简介:

yanyiting666的博客

查看详细资料
个人成就
  • 获得41次点赞
  • 内容获得33次评论
  • 获得131次收藏
创作历程
  • 2篇
    2021年
  • 9篇
    2020年
  • 71篇
    2019年
  • 5篇
    2018年
  • 2篇
    2017年
成就勋章
TA的专栏
  • 教学心得
  • python
    2篇
  • java
    1篇
  • 写论文模板整理
    1篇
  • 自媒体学习
  • LeetCode
    8篇
  • 大数据算法
    3篇
  • Datawhale自然语言处理
    15篇
  • 知识图谱
    1篇
  • 机器学习西瓜书
    13篇
  • 个人
    7篇
  • 目标检测
    1篇
  • 机器学习面试笔试
  • 极客时间
    17篇
  • totem
    3篇
  • 智能问答
    2篇
  • 贪心科技
兴趣领域 设置
  • 人工智能
    opencvnlp
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

Task2 中文预训练模型泛化能力挑战赛

目录赛题描述及数据说明代码实践Step 1:环境准备Step 2:数据读取1) 数据集合并2)标签编码3) 数据信息查看Step 3: 数据分析(EDA)1) 子句长度统计分析2)统计标签的基本分布信息Step 4: 预训练模型选择Step 5: 模型构建1) 切分数据集(Train,Val)进行模型训练、评价2) 构造输入bert的数据格式3) 模型搭建4) 模型训练5) 输出结果赛题描述及数据说明大赛地址:https://.
原创
发布博客 2021.02.25 ·
733 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

task1 中文预训练模型泛化能力天池赛

目录1 目的2 背景2.1 个人配置2.2 赛题要求2.3 本机跑通Baselinepytorch配置3 准备环节4 模型训练过程5 Docker提交5.1 Docker安装5.2 本机Docker推送​​​​​​​1 目的  根据Datawhale大佬们提供的baseline训练模型,并通过docker的方式提交到天池比赛,真的太不容易了。2 背景2.1 个人配置操作系统:mac2.2 赛题要求赛事信息:天池-&..
原创
发布博客 2021.02.21 ·
322 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Task11第12章 计算学习理论

1. 章节主要内容机器学习理论(computational learning theory)研究的是关于通过“计算”来进行“学习”的理论,即关于机器学习的理论基础,其目的是分析学习任务的困难本质,为学习算法提供理论保证,并根据分析结果指导算法设计。这章内容相对比较抽象,它关注的更多是算法能产生的数据与结果之间的映射与实际映射的贴近程度和稳定程度,而不是具体的算法的优劣。这是一个在更高层面审...
原创
发布博客 2019.08.10 ·
925 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

万字综述之生成对抗网络(GAN)

目录参考:https://www.jiqizhixin.com/articles/2019-03-19-121.GAN的基本介绍1.1 GAN的基本概念1.2 目标函数1.2.1 f-divergence1.2.2 Integral probality metric (IPM)1.2.3f-divergence和IPM对比1.24 辅助的目标函数1...
转载
发布博客 2019.03.20 ·
2843 阅读 ·
4 点赞 ·
1 评论 ·
20 收藏

完整项目结构

目录1、一个完整的深度学习项目,一般包含以下功能2、程序文件的组织结构:3、关于__init__.py4、数据加载5、主文件1、一个完整的深度学习项目,一般包含以下功能模型定义数据处理和加载训练模型训练过程的可视化测试2、程序文件的组织结构:checkpoints/ 用于保存训练好的模型,使得程序异常退出后仍能重新载入模型data...
转载
发布博客 2019.06.12 ·
716 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

Task7 卷积神经网络

目录1.定义1.1 卷积运算的定义1.2 动机(稀疏权重、参数共享、等变表示)1.2.1 稀疏连接1.2.2 参数共享1.2.3 等变表示1.3 一维卷积运算和二维卷积运算1.3.1 一维卷积1.3.2 多维卷积2. 反卷积(tf.nn.conv2d_transpose)2.1 卷积2.2反卷积(后卷积,转置卷积)2.3 代码实现3...
原创
发布博客 2019.03.14 ·
1267 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

优质课堂教学的十项特征及衡量指标

优质课堂教学的十项特征及衡量指标,老师请看过来!作为老师,怎样上课才最棒?这里面有没有那些考核的标准或者依据呢?今天分享这篇好文,希望对各位老师能有所参考:优质课堂教学的十项特征一、清晰的课堂教学结构1.过程明了,目标明确,内容清晰;2.师生角色分配清楚,师生双方协商好规则、程序及自由空间。二、高比例的有效学习时间1.时间安排得当,守时;2.拨冗去繁,日程安排有节奏。三、促进学习的课堂气氛1.互相尊重,互相...
原创
发布博客 2020.12.29 ·
500 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

Matplotlib中文与负号显示不出的问题

解决方式一:修改配置文件(1)找到matplotlibrc文件(搜索一下就可以找到了)(2)修改:font.serif和font.sans-serif,我的在205,206行font.serif: SimHei, Bitstream Vera Serif, New Century Schoolbook, Century Schoolbook L, Utopia, ITC Bookman, Bookman, Nimbus Roman No9 L, Times New Roman, Times, P
转载
发布博客 2020.11.17 ·
437 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

排序搜索计数及集合操作

排序搜索计数及集合操作目录1.numpy.sort(a[, axis=-1, kind=‘quicksort’, order=None])2.numpy.argsort(a[, axis=-1, kind=‘quicksort’, order=None])3.numpy.lexsort(keys[, axis=-1])4.numpy.partition(a, kth, axis=-1, kind=‘introselect’, order=None) 5.搜索num...
原创
发布博客 2020.10.31 ·
182 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

2020-10-27

目录一 摘要1 )写博客的担心2)自己的经历二 写博客的好处1)没写博客的原因2)最初的想法3)最后的好处三 总结一 摘要1 )写博客的担心今天来谈谈,写博客对我的益处,说起写博客,其实我写博客的时间不长,也就10来个月时间;之前工作的时候,看到同事每天晚上写博客,当时觉得很奇怪,就觉得写这个东西,非常浪费时间,自己知道的好的技术或者是好的技术解决思路,如果分享出去,不是被别人学去了吗等等一系列问题.2)自己的经历等写了一段时间博客时,慢慢发现,.
转载
发布博客 2020.10.27 ·
199 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Numpy 数学函数及逻辑函数

目录一、向量化和广播二、数学函数算数运算numpy.addnumpy.subtractnumpy.multiplynumpy.dividenumpy.floor_dividenumpy.power三、三角函数numpy.sinnumpy.cosnumpy.tannumpy.arcsinnumpy.arccosnumpy.arctan四、逻辑函数真值测试numpy.allnumpy.any数组内容¶numpy.isnan
原创
发布博客 2020.10.27 ·
2188 阅读 ·
6 点赞 ·
12 评论 ·
13 收藏

教学设计八大部分

教学设计八大部分说课说出教学设计的内容 一、教材分析 二、学情分析 三、教学目标 四、教学重点及难点 五、教学方法及手段、学习方法 六、教学过程(包括教学环节及教学活动设计) 七、板书设计 八、教学效果预测与反思 说课说出教学设计的内容教学设计一般时长为15分钟,内容包括一节课45分钟,可以是专业课程或公共课程。在我的理解中:老师=写剧本+表演,不仅要自己懂也要学生懂。学习同样也是一个内化、迁移的过程。一、教材分析说明为什么选用此书、此书的优势、为.
原创
发布博客 2020.09.13 ·
38304 阅读 ·
4 点赞 ·
0 评论 ·
19 收藏

eclipse自动填写提示代码设置(syso:system.out.println())

eclipse自动填写提示代码设置(syso:system.out.println())windows->preferences->java->editor->content assist2. 在目录树上选择"Java——Editor——Content Assist",在右侧的"Auto-Activation"找到"Auto Activation triggers for java"选项;3. 在"Auto Activation triggers for java"选项中,
原创
发布博客 2020.09.08 ·
509 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

作为高校老师,该如何兼顾教学与科研?

摘要通过对南昌大学16位教师的深度访谈,采用质性分析方法,从知识与性格两个维度出发,讨论了二者对高校教师教学与科研工作乃至职业发展的作用关系。研究结果表明:高校教师在教学与科研工作中均有知识与性格的显著表现;教师的职业发展依赖于教学与科研,而教学与科研本身既可能是矛盾冲突关系也可能是相辅相成关系,关键在于教师的平衡与协调;教师的知识与性格之间存在着相互转化机制,二者的共同作用有利于促进教师职业发展。由此,以教师职业发展为目标,基于知识与性格融合的视角,提出高校教师知性管理理论,包括管理框架与基本逻辑,为
原创
发布博客 2020.09.08 ·
3410 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

写论文的方法

目录1、搜集以下的源头所提供的latex或者word基础格式模板:2、一定要认准了论文的框架结构:3、去网上搜,论文的写作语句,我给出几个URL给你:4、做实验,塞内容5、找你实验的主题的那些较新论文,看看怎么抽取一些reference出来1、搜集以下的源头所提供的latex或者word基础格式模板: SCI期刊:IEEE的子期刊(NLP的),ACM,等 会议:ACL,COLING,NAACL等 中文:中文信息学报,软件学报,计算机...
原创
发布博客 2020.05.28 ·
898 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

15章规则学习

15.1基本概念规则学习是从训练数据中学习一组能用于对未见示例进行判别的规则。规则可分为两类:命题规则和一阶规则命题规则由原子命题和逻辑连接词构成简单陈述句。一阶规则基本成分是能描述事物的属性或关系的原子公式,能够表达复杂的关系,也被称为关系型规则命题规则是一阶规则的特例,一阶规则的学习比命题规则复杂。15.2 序贯覆盖一般有两种策略:自顶向下:从比较...
原创
发布博客 2019.08.22 ·
1548 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Tssk9 第10章 降维与度量空间

1. 章节主要内容本章的主要内容是降维与度量学习,这是机器学习领域很重要的一块内容。在进入具体的介绍之前,对降维与度量学习不清楚的小伙伴们其实可以尝试从字面意思上理解一下降维与度量学习是干什么的,而它们又与机器学习有什么关系。我相信看过科幻小说的人,应该都对降维度打击这个概念不陌生吧,在某些科幻小说中,生活在更高维度的外星人可以通过降低自己的维度来打击低纬度的生命体,而这种方式的打击由于带...
原创
发布博客 2019.08.10 ·
752 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

Task12第13章 半监督学习

1. 章节主要内容在前边的学习过程中,我们知道了监督学习和无监督学习的区别。前者是在标注好了的训练集上训练学习器,并用训练好的学习器去对新的样本进行预测,朴素贝叶斯、决策树、神经网络等都属于这类机器学习算法。后者是在未标注的数据集上根据数据本身的分布情况来对数据进行分类,各种聚类算法就是这类的机器学习算法。从上边的定义来看,一个机器学习算法“监督”与否取决于用来计算的数据有无被“标注”好!...
原创
发布博客 2019.08.10 ·
937 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

Task14学习第15章 规则学习

目录第15章 规则学习模型15.1 基本概念15.2 序贯覆盖15.3 剪枝优化15.4 一阶规则学习15.5 归纳逻辑程序设计(ILP)15.5.1 最小一般泛化(LGG)15.5.2 逆归结15.6 阅读材料第15章 规则学习模型15.1 基本概念“规则”通常指语义明确,能描述数据分布隐含的客观规律或领域概念,可写成“若..则..”。与...
原创
发布博客 2019.08.10 ·
410 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

学习第14章 概率图模型

机器学习的核心思想就是根据已知的内容去推测未知的内容,然后在已知和未知之间建立起联系,这个联系就是机器学习中的各种模型!这和我们的经验系统很像,在第一章中的挑西瓜的例子就是我们利用经验系统来把西瓜的可观测外观信息(根蒂、花纹、声响)和未知信息(是否是好瓜)建立起联系的结果。说回本章的内容,一种建立已知信息与未知信息联系的方法是对未知信息的概率分布进行推测。概率模型(probabilistic ...
原创
发布博客 2019.08.10 ·
1474 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏
加载更多