顺丰(小哥派件装载问题)背包问题

该博客探讨了一种动态规划的解决方案,用于解决快递小哥在有限的电瓶车快递箱容量下,如何选取快递使得剩余空间最小的问题。通过分析示例输入和输出,可以看出该算法有效地处理了不同体积的快递组合,确保了快递箱空间利用的最大化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题

快递小哥每天都需要揽件并骑电瓶车派送快递,假设电瓶车快递箱容量为V,小哥需要派送n个快递,每个快递都有一定的体积大小。
要求在需要派送的n个快递中,任取若干个快递装放入快递箱,不能溢出,使快递箱的剩余空间最小。

输入:

  • n个快递的体积数组:N[],
  • 电瓶车快递箱容量:V

返回:

  • 尽量装满快递后,快递箱剩余的最小容量

示例1

输入:N = [8, 1, 12, 7, 9, 7], V = 11
输出:1
解释:快递箱容量V为11,物品体积数组N为[8, 1, 12, 7, 9, 7],最优解为取体积为
1的快递和体积为9的快递,即快递箱剩余最小空间为 11-(1+9)=1

示例2

输入:N = [8, 2, 12, 7, 9, 7], V = 11
输出:0
解释:11-(2+9) = 0

示例3

输入:N = [8, 2, 12, 7, 9, 7], V = 100
输出:55
解释:100-(8+2+12+7+9+7) = 55

示例4

输入:N = [8, 19, 18,23,16,20], V = 5
输出:5
解释:由于快递箱不能溢出,没有体积小于5的快递,所以快递箱剩余最小空间为5

提示

  • 0 < N.length ≤ 30
  • 0 < N[i] < 2000
  • V为整数:0 ≤ V ≤ 2000

看到这个很自然的想到了是背包问题,即一个背包是否能装下target的物品,动态规划,首先第一列是装0个所有全为true,第一行应该只有一个为true,就是N[0]

class Solution {
public:
    int minRemainingSpace(vector<int>& N, int V) {//背包问题
        int n=N.size();
        vector<vector<bool>> dp(n,vector<bool>(V+1,false));//动态规划去做,dp[m][n],m为存放内容的数组的大小,n为容量的大小
        for(int i=0;i<n;++i)dp[i][0]=true;//所有行中,容量为1肯定为true
        dp[0][N[0]]=true;//对于第一行而言,为true的只能是N[0]这个位置
        for(int i=1;i<n;++i)
        {
            for(int j=1;j<=V;++j)
            {
                dp[i][j]=((j-N[i]<0?dp[i-1][j]:dp[i-1][j-N[i]])||dp[i-1][j]);
            }
        }
        
        int i=V;
        for(;i>=0;--i)
        {
            if(dp[n-1][i])break;
        }
        return V-i;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yanzhe1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值