问题
快递小哥每天都需要揽件并骑电瓶车派送快递,假设电瓶车快递箱容量为V,小哥需要派送n个快递,每个快递都有一定的体积大小。
要求在需要派送的n个快递中,任取若干个快递装放入快递箱,不能溢出,使快递箱的剩余空间最小。
输入:
- n个快递的体积数组:N[],
- 电瓶车快递箱容量:V
返回:
- 尽量装满快递后,快递箱剩余的最小容量
示例1
输入:N = [8, 1, 12, 7, 9, 7], V = 11
输出:1
解释:快递箱容量V为11,物品体积数组N为[8, 1, 12, 7, 9, 7],最优解为取体积为
1的快递和体积为9的快递,即快递箱剩余最小空间为 11-(1+9)=1
示例2
输入:N = [8, 2, 12, 7, 9, 7], V = 11
输出:0
解释:11-(2+9) = 0
示例3
输入:N = [8, 2, 12, 7, 9, 7], V = 100
输出:55
解释:100-(8+2+12+7+9+7) = 55
示例4
输入:N = [8, 19, 18,23,16,20], V = 5
输出:5
解释:由于快递箱不能溢出,没有体积小于5的快递,所以快递箱剩余最小空间为5
提示
- 0 < N.length ≤ 30
- 0 < N[i] < 2000
- V为整数:0 ≤ V ≤ 2000
看到这个很自然的想到了是背包问题,即一个背包是否能装下target的物品,动态规划,首先第一列是装0个所有全为true,第一行应该只有一个为true,就是N[0]
class Solution {
public:
int minRemainingSpace(vector<int>& N, int V) {//背包问题
int n=N.size();
vector<vector<bool>> dp(n,vector<bool>(V+1,false));//动态规划去做,dp[m][n],m为存放内容的数组的大小,n为容量的大小
for(int i=0;i<n;++i)dp[i][0]=true;//所有行中,容量为1肯定为true
dp[0][N[0]]=true;//对于第一行而言,为true的只能是N[0]这个位置
for(int i=1;i<n;++i)
{
for(int j=1;j<=V;++j)
{
dp[i][j]=((j-N[i]<0?dp[i-1][j]:dp[i-1][j-N[i]])||dp[i-1][j]);
}
}
int i=V;
for(;i>=0;--i)
{
if(dp[n-1][i])break;
}
return V-i;
}
};