给你一个整数数组 nums 和一个整数 target 。
向数组中的每个整数前添加 '+' 或 '-' ,然后串联起所有整数,可以构造一个 表达式 :
例如,nums = [2, 1] ,可以在 2 之前添加 '+' ,在 1 之前添加 '-' ,然后串联起来得到表达式 "+2-1" 。
返回可以通过上述方法构造的、运算结果等于 target 的不同 表达式 的数目。
//背包问题:假设所有取负号的值和为neg,整个数组的和为sum,那取正号的值就是sum-neg,所以问题就变成了(sum-neg)-neg=target;也即neg=(sum-target)/2;因为neg一定要为正整数,当sum-target为负数或者奇数的时候,一定不会有满足条件的存在。所以问题就变成了从一堆数里找出满足其和neg等于sum-target的值
示例 1:
输入:nums = [1,1,1,1,1], target = 3
输出:5
解释:一共有 5 种方法让最终目标和为 3 。
-1 + 1 + 1 + 1 + 1 = 3
+1 - 1 + 1 + 1 + 1 = 3
+1 + 1 - 1 + 1 + 1 = 3
+1 + 1 + 1 - 1 + 1 = 3
+1 + 1 + 1 + 1 - 1 = 3
示例 2:
输入:nums = [1], target = 1
输出:1
class Solution {
public:
int findTargetSumWays(vector<int>& nums, int target) {
//背包问题
//假设所有取负号的值和为neg,整个数组的和为sum,那取正号的值就是sum-neg
//所以问题就变成了(sum-neg)-neg=target;也即neg=(sum-target)/2;
//因为neg一定要为正整数,当sum-target为负数或者奇数的时候,一定不会有满足条件的存在
//所以问题就变成了从一堆数里找出满足其和neg等于sum-target的值
int m=nums.size(),sum=accumulate(nums.begin(),nums.end(),0);
int val=sum-target;
if(val<0||val%2)return 0;
else val/=2;
vector<vector<int>> dp(m+1,vector<int>(val+1,0));
dp[0][0]=1;//表示一个都不取,也即全为正数的时候
for(int i=1;i<=m;++i)
{
for(int j=0;j<=val;++j){//每一个位置可能的情况就是取这个位置的值和不取这个位置的值
dp[i][j]=dp[i-1][j]+(j-nums[i-1]>=0?dp[i-1][j-nums[i-1]]:0);
}
}
return dp[m][val];
}
};