畅通工程再续
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 21736 Accepted Submission(s): 6869
Problem Description
相信大家都听说一个“百岛湖”的地方吧,百岛湖的居民生活在不同的小岛中,当他们想去其他的小岛时都要通过划小船来实现。现在政府决定大力发展百岛湖,发展首先要解决的问题当然是交通问题,政府决定实现百岛湖的全畅通!经过考察小组RPRush对百岛湖的情况充分了解后,决定在符合条件的小岛间建上桥,所谓符合条件,就是2个小岛之间的距离不能小于10米,也不能大于1000米。当然,为了节省资金,只要求实现任意2个小岛之间有路通即可。其中桥的价格为 100元/米。
Input
输入包括多组数据。输入首先包括一个整数T(T <= 200),代表有T组数据。
每组数据首先是一个整数C(C <= 100),代表小岛的个数,接下来是C组坐标,代表每个小岛的坐标,这些坐标都是 0 <= x, y <= 1000的整数。
每组数据首先是一个整数C(C <= 100),代表小岛的个数,接下来是C组坐标,代表每个小岛的坐标,这些坐标都是 0 <= x, y <= 1000的整数。
Output
每组输入数据输出一行,代表建桥的最小花费,结果保留一位小数。如果无法实现工程以达到全部畅通,输出”oh!”.
Sample Input
2 2 10 10 20 20 3 1 1 2 2 1000 1000
Sample Output
1414.2 oh!
Author
8600
Source
麻烦的地方在于把不符合的边删掉,初学最小生成树,熟悉一下模板
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<algorithm>
using namespace std;
struct node
{
double from;
double to;
double dis;
}t[10010];
int cmp(node a,node b)
{
return a.dis <b.dis;
}
int per[110],m,n;
int find(int x)
{
if(x==per[x])
return x;
return per[x]=find(per[x]);
}
int join(int x,int y)
{
int fx=find(x);
int fy=find(y);
if(fx!=fy)
{
per[fx]=fy;
return 1;
}
return 0;
}
int main()
{
int i,j,k,x[1000],y[1000],time;
double l;
scanf("%d",&time);
while(time--)
{
memset(x,0,sizeof(x));
memset(y,0,sizeof(y));
for(i=0;i<110;i++)
per[i]=i;
scanf("%d",&n);
for(i=1;i<=n;i++)
scanf("%d%d",&x[i],&y[i]);
k=0;
for(i=1;i<=n;i++)
for(j=i+1;j<=n;j++)
{
l=sqrt((x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j]));
if(l>=10.0&&l<=1000.0)
{
t[k].from=i;
t[k].to =j;
t[k].dis =l;
k++;
}//把不符合的边去掉
}
sort(t,t+k,cmp);
double sum=0.0;
int flag=0;
for(i=0;i<k;i++)
{
if(join(t[i].from,t[i].to))
sum=sum+t[i].dis;
}
sum=sum*100;
for(i=1;i<=n;i++)
if(per[i]==i)
flag++;
if(flag>1)
printf("oh!\n");
else
printf("%.1lf\n",sum);
}
return 0;
}