hdu 2176 取(m堆)石子游戏

取(m堆)石子游戏

Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2449    Accepted Submission(s): 1435


Problem Description
m堆石子,两人轮流取.只能在1堆中取.取完者胜.先取者负输出No.先取者胜输出Yes,然后输出怎样取子.例如5堆 5,7,8,9,10先取者胜,先取者第1次取时可以从有8个的那一堆取走7个剩下1个,也可以从有9个的中那一堆取走9个剩下0个,也可以从有10个的中那一堆取走7个剩下3个.
 

Input
输入有多组.每组第1行是m,m<=200000. 后面m个非零正整数.m=0退出.
 

Output
先取者负输出No.先取者胜输出Yes,然后输出先取者第1次取子的所有方法.如果从有a个石子的堆中取若干个后剩下b个后会胜就输出a b.参看Sample Output.
 

Sample Input
  
  
2 45 45 3 3 6 9 5 5 7 8 9 10 0
 

Sample Output
  
  
No Yes 9 5 Yes 8 1 9 0 10 3
 

Author
Zhousc
 

Source
 

Recommend
lcy   |   We have carefully selected several similar problems for you:   2177  1850  1730  1536  1848 
如果知道尼姆博弈的思想,这道题就不难解决

尼姆博弈基本思想:

        两人从n堆物品中取任意个,先取完者胜。

        即将n堆物品的数量异或,得到的值如果为0,则先手败,反之先手胜。

        如果要求先手在胜的条件下,到奇异局势的方法数,则判断异或的值与每一堆原值异或后(结果应该表示该堆没有参加异或时的异或值)与原值比较大小,

如果小于,则方法数加一。且对应的方法后,该堆的数目应变为异或的值与每一堆原值异或的值。

 这里再对异或运算做一下解释

异或的运算方法是一个二进制运算:
1^1=0
 0^0=0
 1^0=1
 0^1=1
两者相等为0,不等为1.


#include<stdio.h>
#include<algorithm>
#include<string.h>
using namespace std;
int main()
{
	int m,i,j,t,a[300000];
	while(scanf("%d",&m),m)
	{
		int temp=0;
		for(i=0;i<m;i++)
		{
			scanf("%d",&a[i]);
		    temp=temp^a[i];
		}
		if(temp==0)
		printf("No\n");
		else
		{
			printf("Yes\n");
			for(i=0;i<m;++i)
			{
				t=temp^a[i];
				if(t<a[i])
				printf("%d %d\n",a[i],t);
			}
		}
	}
	return 0;
 } 



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值