取(m堆)石子游戏
Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 2449 Accepted Submission(s): 1435
Problem Description
m堆石子,两人轮流取.只能在1堆中取.取完者胜.先取者负输出No.先取者胜输出Yes,然后输出怎样取子.例如5堆 5,7,8,9,10先取者胜,先取者第1次取时可以从有8个的那一堆取走7个剩下1个,也可以从有9个的中那一堆取走9个剩下0个,也可以从有10个的中那一堆取走7个剩下3个.
Input
输入有多组.每组第1行是m,m<=200000. 后面m个非零正整数.m=0退出.
Output
先取者负输出No.先取者胜输出Yes,然后输出先取者第1次取子的所有方法.如果从有a个石子的堆中取若干个后剩下b个后会胜就输出a b.参看Sample Output.
Sample Input
2 45 45 3 3 6 9 5 5 7 8 9 10 0
Sample Output
No Yes 9 5 Yes 8 1 9 0 10 3
Author
Zhousc
Source
Recommend
如果知道尼姆博弈的思想,这道题就不难解决
尼姆博弈基本思想:
两人从n堆物品中取任意个,先取完者胜。
即将n堆物品的数量异或,得到的值如果为0,则先手败,反之先手胜。
如果要求先手在胜的条件下,到奇异局势的方法数,则判断异或的值与每一堆原值异或后(结果应该表示该堆没有参加异或时的异或值)与原值比较大小,
如果小于,则方法数加一。且对应的方法后,该堆的数目应变为异或的值与每一堆原值异或的值。
这里再对异或运算做一下解释
异或的运算方法是一个二进制运算:
1^1=0
0^0=0
1^0=1
0^1=1
两者相等为0,不等为1.
#include<stdio.h>
#include<algorithm>
#include<string.h>
using namespace std;
int main()
{
int m,i,j,t,a[300000];
while(scanf("%d",&m),m)
{
int temp=0;
for(i=0;i<m;i++)
{
scanf("%d",&a[i]);
temp=temp^a[i];
}
if(temp==0)
printf("No\n");
else
{
printf("Yes\n");
for(i=0;i<m;++i)
{
t=temp^a[i];
if(t<a[i])
printf("%d %d\n",a[i],t);
}
}
}
return 0;
}