数论复习之中国剩余定理

设W1,W2,…,Wk是两两互质的正整

即gcd(Wi,Wj)=1, i≠j,1<=i, j=k, 则下面方程组有惟一解:

X≡b1 mod W1 ———表示X % W1==b1
X≡b2 mod W2 ———表示X % W2==b2
……
X≡bk mod Wk ———表示X % WK==bK

上面方程组的解为:

X=(M1*M1^(-1)*b1 + M2*M2^(-1)*b2 +…+ Mk*Mk^(-1)*bk ) mod P

其中:

P = W1*W2*…*Wk

Mi = P / Wi

代码:

int China(int B[ ],int W[ ],int k)   
 {       
         int i,d,x,y,ans=0,Mi,P=1;   
         for(i=1;i<=k;i++)  P*=W[i];   
         for(i=1;i<=k;i++)   
         {
            Mi=P/W[i];
            d=ext_euclid(Mi,W[i],x,y);             //扩欧求Mi的逆元   
            ans=(ans+x*Mi*B[i])%P;   
       }   
       if(ans>0)return ans;  
       else return(ans+P);   
   } 

应用:田忌赛马、周期问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值