牛客每日一题之 前缀和

目录

题目介绍:

 算法原理:

前缀和:

代码实现:


题目介绍:

题目链接:【模板】前缀和_牛客题霸_牛客网

 算法原理:

先讲讲暴力解法每次求出数组下标r之前元素的和,再减去数组下标l-1之前元素的和,就是我们想的到的,如图:

如果只进行一次查询还好,可他要进行q次查询,n,q最大取10的5次方 最坏情况的话,每次查询都要遍历整个数组,时间复杂度为O(n*q)==10的10次方,想都不用想必定超时。

前缀和:

其实我们可以优化一下,重新创建一个新数组(我命名为dp),这个数组i下标对应的元素是arr数组(原数组)的下标i之前的元素和,如图:

 这样我们利用O(n)的时间复杂度,作出这个数组后,以后的查询只需利用 dp数组中的元素来相减的到结果gentle=dp[r]-dp[i-1],所以查询q次的时间复杂度O(q),所以总体的时间复杂度为O(n)+O(q)。

我们在实现dp这个数组时,不必算每个元素都去原数组求一遍和,有更简单的算法,如图:

我们可以发现其实dp的每一个元素都等于它的前一个元素和对应下标arr数组元素的和,也就是dp[i]=dp[i-1]+arr[i],这里还需注意一个特殊情况,d[0]是没有前一个元素的哦,而且我们题目的下标是从1开始的,而我们数组默认下标是从0开始的,所以我们应该给这两个数组的第一个位置放两个无效数据0,如图:

代码实现:

 C++

#include <iostream>
#include<vector>
using namespace std;

int main() {
    //输入数据
    int n,q;
    cin>>n>>q;
    vector<int> arr(n+1);
    int i=0;
    for(i=1;i<=n;i++)
    {
        int b=0;
        cin>>b;
        arr[i]=b;
    }
    //dp数组实现
    vector<long long> dp(n+1);
    for(i=1;i<=n;i++)
    {
        dp[i]=dp[i-1]+arr[i];
    }
    //进行q次查询
    while(q--)
    {
        int l,r;
        cin>>l>>r;
        cout<<dp[r]-dp[l-1]<<endl;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

咬_咬

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值