Description
There is a pile of n wooden sticks. The length and weight of each stick are known in advance. The sticks are to be processed by a woodworking machine in one by one fashion. It needs some time, called setup time, for the machine to prepare processing a stick. The setup times are associated with cleaning operations and changing tools and shapes in the machine. The setup times of the woodworking machine are given as follows:
(a) The setup time for the first wooden stick is 1 minute.
(b) Right after processing a stick of length l and weight w , the machine will need no setup time for a stick of length l' and weight w' if l<=l' and w<=w'. Otherwise, it will need 1 minute for setup.
You are to find the minimum setup time to process a given pile of n wooden sticks. For example, if you have five sticks whose pairs of length and weight are (4,9), (5,2), (2,1), (3,5), and (1,4), then the minimum setup time should be 2 minutes since there is a sequence of pairs (1,4), (3,5), (4,9), (2,1), (5,2).
(a) The setup time for the first wooden stick is 1 minute.
(b) Right after processing a stick of length l and weight w , the machine will need no setup time for a stick of length l' and weight w' if l<=l' and w<=w'. Otherwise, it will need 1 minute for setup.
You are to find the minimum setup time to process a given pile of n wooden sticks. For example, if you have five sticks whose pairs of length and weight are (4,9), (5,2), (2,1), (3,5), and (1,4), then the minimum setup time should be 2 minutes since there is a sequence of pairs (1,4), (3,5), (4,9), (2,1), (5,2).
Input
The input consists of T test cases. The number of test cases (T) is given in the first line of the input file. Each test case consists of two lines: The first line has an integer n , 1<=n<=5000, that represents the number of wooden sticks in the test case, and the second line contains n 2 positive integers l1, w1, l2, w2, ..., ln, wn, each of magnitude at most 10000 , where li and wi are the length and weight of the i th wooden stick, respectively. The 2n integers are delimited by one or more spaces.
Output
The output should contain the minimum setup time in minutes, one per line.
Sample Input
3 5 4 9 5 2 2 1 3 5 1 4 3 2 2 1 1 2 2 3 1 3 2 2 3 1
Sample Output
2 1 3// 贪心算法---先排序---后选择第一个没有用过的木头一次向后找,用掉所有可以用掉的木头,然后返回第一个没用过的木头继续找 #include<iostream> #include<string.h> #include<stdio.h> #include<ctype.h> #include<algorithm> #include<stack> #include<queue> #include<set> #include<math.h> #include<vector> #include<deque> #include<list> using namespace std; struct mg { int l; int z; }p[5050]; bool cmp(mg a,mg b) { if(a.l==b.l) return a.z<b.z; else return a.l<b.l; } int s[5050]; int main() { int T,n,i,j; int count=0; bool flag; scanf("%d",&T); while(T--) { count=0; scanf("%d",&n); for(i=0;i<n;i++) cin>>p[i].l>>p[i].z; sort(p,p+n,cmp); memset(s,0,sizeof(s)); s[0]=1; int jl=0;//用来记录第一次没用的木块 count=0; while(jl<n) { count++; for(i=jl+1,j=jl,flag=1;i<n;i++) { if(s[i])//标记为1的就跳过 continue; if(p[i].l>=p[j].l&&p[i].z>=p[j].z)//两个条件都满足,才能分为一组 { j=i; s[i]=1; } else { if(flag) { jl=i; flag=0; } } } if(flag)//如果走了一遍都符合就,结束 break; } printf("%d\n",count); } return 0; }