种类并查集与朴素的并查集判断是否在同一集团,可能有多个集团。
先看一个例题:https://www.luogu.com.cn/problem/P1525
一共有n个罪犯,m组对立关系,这道题我们可以通过贪心将怨恨值从大到小排序,大的怨恨值两人先分开放在不同的监狱,直到两个人无法分开放即为答案。
那么我们如何来将罪犯们分配到两个监狱呢?可以通过利用种类并查集的方式。
对于n个元素,我们开大小为2n的数组,n+1-2n这n个元素依次代表前n个元素的对立关系,即“敌人”。
对于每一组对立关系,比如我们知道1与2是敌人,则让1与2+n合并到同一集合中,1+n与2合并到同一集合中,对于1来说我们设1+n是它的敌人,同样2+n是2的敌人,那么我们把1与2+n合并到同一集合中,1与2的敌人在同一集合中,这就确定了1与2的对立关系。在下图中,我们设1与2为敌人,2与4为敌人,通过连线表示合并关系。
合并完后,1与4通过6(2+n)形成了一条路径(二者连接了起来),这样确定了1与4在同一集合中,所谓“敌人的敌人就是朋友”,1,4都与6(2的敌人)为朋友。所以1与4也是朋友。
代吗:
#include<bits/stdc++.h>
using namespace std;
const int N=2e5+10;
struct crime
{
int u;
int v;
int w;
friend bool operator < (crime node1,crime node2)
{
return node1.w>node2.w;
}
}peo[N];
int f[N];
int n,m;
int find(int x)
{
if(f[x]!=x)
f[x]=find(f[x]);
return f[x];
}
void merge(int a,int b)
{
f[find(a)]=find(b);
}
int main()
{
for(int i=1;i<=N;i++)
f[i]=i;
scanf("%d %d",&n,&m);
for(int i=1;i<=m;i++)
{
scanf("%d %d %d",&peo[i].u,&peo[i].v,&peo[i].w);
}
sort(peo+1,peo+1+m);
for(int i=1;i<=m;i++)
{
int a=peo[i].u,b=peo[i].v;
if(find(a)==find(b))
{
printf("%d",peo[i].w);
return 0;
}
merge(a,b+n);
merge(b,a+n);
}
printf("0");
return 0;
}
还有另外一种做法就是另外开一个数组,这个数组保存集合的敌人
for(int i=1;i<=m;i++)
{
int x=find(cr[i].u),y=find(cr[i].v);
if(x==y)
{
printf("%d",cr[i].w);
}
if(!b[x])//如果x没有敌人则y为x所在集合的敌人
b[x]=y;
else
p[y]=find(b[x]);//如果x所在集合有敌人则,y与x的敌人们应在同一集合
if(!b[y])
b[y]=x;
else
p[x]=find(b[y]);
}