一个字符串S
,去掉零个或者多个元素所剩下的子串称为S
的子序列。最长公共子序列就是寻找两个给定序列的子序列,该子序列在两个序列中以相同的顺序出现,但是不必要是连续的。
例如序列X=ABCBDAB
,Y=BDCABA
。序列BCA
是X
和Y
的一个公共子序列,但不是X
和Y
的最长公共子序列,子序列BCBA
是X
和Y
的一个LCS
,序列BDAB
也是。
寻找LCS
的一种方法是枚举X
所有的子序列,然后注意检查是否是Y
的子序列,并随时记录发现的最长子序列。假设X
有m
个元素,则X
有2^m
个子序列,指数级的时间,对长序列不实际。
使用动态规划求解这个问题,先寻找最优子结构。设X=<x1,x2,…,xm>
和Y=<y1,y2,…,yn>
为两个序列,LCS(X,Y)
表示X
和Y
的一个最长公共子序列,可以看出
如果Xm=Yn
,则LCS ( X,Y ) = Xm + LCS ( Xm-1,Yn-1 )
。
如果Xm!=Yn,则LCS( X,Y )= max{ LCS ( Xm-1, Y ), LCS ( X, Yn-1 ) }
LCS
问题也具有重叠子问题性质:为找出X
和Y
的一个LCS
,可能需要找X
和Yn-1
的一个LCS
以及Xm-1
和Y
的一个LCS
。但这两个子问题都包含着找Xm-1
和Yn-1
的一个LCS
,等等.
DP
最终处理的还是数值(极值做最优解),找到了最优值,就找到了最优方案;为了找到最长的LCS
,我们定义dp[i][j]
记录序列LCS
的长度,合法状态的初始值为当序列X
的长度为0
或Y
的长度为0
,公共子序列LCS
长度为0
,即dp[i][j]=0
,所以用i
和j
分别表示序列X
的长度和序列Y
的长度,状态转移方程为
dp[i][j] = 0 如果i=0或j=0
dp[i][j] = dp[i-1][j-1] + 1 如果X[i-1] = Y[i-1]
dp[i][j] = max{ dp[i-1][j], dp[i][j-1] } 如果X[i-1] != Y[i-1]
实现
int dp[21][21]; /* 存储LCS长度, 下标i,j表示序列X,Y长度 */
char X[21];
char Y[21];
/* dp[0-Xlen][0] & dp[0][0-Ylen] 都已初始化0 */
for(i = 1; i <= Xlen; ++i)
{
for(j = 1; j <= Ylen; ++j)
{
if(X[i-1] == Y[j-1])
{
dp[i][j] = dp[i-1][j-1] + 1;
}else if(dp[i][j-1] > dp[i-1][j])
{
dp[i][j] = dp[i][j-1];
}else
{
dp[i][j] = dp[i-1][j];
}
}
}
cout << "len of LCS is: " << dp[Xlen][Ylen] << endl;
对于上述方式,我们可以逆序求出可能的LCS
组合。因为使用的辅助数组只使用两行即可,因此可以使用滚动数组。
for(i = 1; i <= xlen; ++i)
{
k = i & 0x01; // k为0或1
for(j = 1; j <= ylen; ++j)
{
if(X[i-1] == Y[j-1])
{
dp[k][j] = dp[k][j-1] + 1;
}else if(dp[k][j-1] > dp[k^1][j])
{
dp[k][j] = dp[k][j-1];
}else
{
dp[k][j] = dp[k][j];
}
}
}