【论文阅读】机器学习中原型学习研究进展

阅读目标

  1. 寻找原型与偏差之间的关系
  2. 了解原型学习的方法然后pick one

阅后回答

摘要

动机:消除数据冗余、发现数据结构、提高数据质量

方法:通过寻找一个原型集来表示目标集,以从样本空间进行数据约简

分类:按照监督方式):分为无监督、半监督和全监督;按照模型设计,分为基于相似度、行列式点过程、数据重构和低秩逼近

概念和意义

概念:设有源集 X X X和目标集 Y Y Y,目标是从 X X X中找到一个原型集 Ω \Omega Ω,使得 Ω \Omega Ω能够最大程度地保持目标集 Y Y Y所蕴含的信息,如下图:
在这里插入图片描述

直接看概念和图示较难理解,可以结合这个例子:相簿更新系统,摄影集是源集 X X X,用户的初选照片担任目标集 Y Y Y,我们的目标是从源集中找到最符合用户原始收藏习惯的照片,即原型集 Ω \Omega Ω

那么目标集就可以看作是为我们寻找原型提供依据的身份,在实际应用中,目标集和原型集应该有着更相似的物理意义,但同时应该指出,很多任务中的目标集和源集是一样的,因为我们更多时候找不到原型的依据,这时原型学习就很像是无监督学习中的聚类学习,但聚类和原型学习是不一样的,区别是:

  1. 聚类学习中,我们更关注目标集的语义信息;但原型学习的概念更广,我们希望原型可以不仅表示目标集的语义信息,还能表示目标集的结构或容量等信息;从这种意义上讲,原型学习可以视为一种细粒度的聚类问题
  2. 原型学习获得的原型数量是灵活变化的,而聚类需要提前预设要聚几类

原型学习的方法

按照是否使用了语义信息约束原型的生成,可以分为无监督、半监督和全监督方法:

监督方式介绍方法应用参考文章
无监督大部分工作使用的方法k-DPPs通常被用来选择视频序列的关键帧K-dpps: fixed-size determinantal point processes.
最大割准则和最大边缘相关准则原型集内元素间的关联性对于面向时序数据的视觉应用十分重要The use of MMR, diversity-based reranking for reordering documents and producing summaries.
半监督当用户不仅需要代表性的子集且希望了解它们是什么Joint representative selection and feature learning: a semi-supervised approach.
全监督当能够获得数据的语义信息时(如图像分类算法)基于浅层模型的原型学习通常用来约简k-NN、SVM等推理算法的训练数据RSVM: Reduced support vector machines.
深度学习的原型学习学习表征、增强模型泛化能力Robust classification with convolutional prototype learning.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值