自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(42)
  • 收藏
  • 关注

原创 mmdetection v3避坑

无法找到model-index.yml。

2023-09-23 17:22:08 200

原创 论文阅读——Exploring Non-target Knowledge for Improving Ensemble Universal Adversarial Attacks

只考虑KL损失的非目标类来解决dominant bias issue问题,同时引入min-max learning framework 来调整每个CNN的集成权重,提升攻击性能1、基本参数2、目标攻击定义3、非目标攻击(负交叉熵损失)定义内部最大化使用梯度下降法寻找最优的www外部最小化使用ADAM优化器寻找最优的δ\deltaδ其中λβαγλβαγ均为超参数或优化参数。

2023-09-20 20:31:31 215 1

原创 论文阅读——Imperceptible Adversarial Attack via Invertible Neural Networks

作者利用可逆神经网络(AdvINN)方法进行对抗性攻击,生成鲁棒且难以察觉的对抗性示例。AdvINN利用INN的信息保留属性,添加目标类的指定信息、删除与原始类别不同的信息来生成对抗样本。

2023-08-18 11:44:58 1898 1

原创 论文阅读——Bridge the Gap Between CV and NLP! A Gradient-based Textual Adversarial Attack Framework

尽管基于优化的对抗攻击在计算机视觉领域是有效的,但是不能直接用于自然语言处理领域的离散文本。为解决这一问题,作者提出了一种统一的框架,将CV领域基于优化的对抗攻击方法扩展到自然语言处理领域来生成对抗样本。在该框架中,连续优化的扰动被添加到嵌入层并在前向传播过程中被放大,然后潜在空间上到的扰动被使用masked language model解码来获得潜在的对抗样本。在攻击者本地数据集上微调的proxy BERT model编码每个离散文本实例为连续的token。

2023-08-15 16:18:56 231

原创 论文阅读——Adversarial Eigen Attack on Black-Box Models

将白盒攻击和黑盒攻击相结合。通过将白盒模型的中间表示到黑盒模型输出的映射看作一个黑盒函数,在表示空间上形成一个替代的黑盒攻击设置,可以应用黑盒攻击的常见做法。另一方面,从原始输入到中间表示层的映射是预训练模型的一部分,可以看作是一个白盒设置。值得注意的是,该框架可以处理两个模型相同或不同的分类类别,增强了其实际应用场景。使用预训练白盒网络的表示空间有助于提高黑盒模型的攻击效率的主要原因是,深度神经网络的较低层,即表示学习层,在不同的数据集或数据分布之间是可转移的。

2023-08-14 20:32:39 1414

原创 论文阅读——Sparse-RS: a Versatile Framework for Query-Efficient Sparse Black-Box Adversarial Attacks

黑盒设置下提出了一种基于得分的非目标和目标对抗攻击, Sparse-RS。该攻击方法并没有依赖替代模型就实现了最先进的攻击能力。

2023-08-11 20:38:48 254

原创 论文阅读——Guided Adversarial Attack for Evaluating and Enhancing Adversarial Defenses

白盒攻击Guided Adversarial Attack for Evaluating and Enhancing Adversarial Defenses文章连接https://papers.nips.cc/paper/2020/file/ea3ed20b6b101a09085ef09c97da1597-Paper.pdf代码连接Guided Adversarial Attack for Evaluating and Enhancing Adversarial Defenses | Paper

2022-05-26 16:39:24 730

原创 论文阅读——DaST: Data-free Substitute Training for Adversarial Attacks

摘要对于黑盒设置,当前的替代战术需要预先训练的模型来生成对抗样本。然而,在现实世界的任务中很难获得预先训练的模型。本文提出了一种无数据替代训练方法(DaST),在不需要任何真实数据的情况下获得对抗黑箱攻击的替代模型。作者针对generative moddel设计了一个multi-branch 结构和label-control loss来解决合成样本分布不均匀的问题缺陷替代模型仅针对与某一特定的目标模型仍需访问目标模型的输出或输出概率分布训练生成器查询量必定很大相关性工作攻击方法主要分为两类:黑

2021-11-29 23:14:57 2830

原创 文章阅读——Improving the Transferability of Adversarial Samples with Adversarial Transformations

摘要现存的攻击方法由于采取局部模型的过拟合导致基于迁移的对抗攻击方法攻击成功率较低。为增加此类方法的攻击成功率作者使用对抗变换网络来建模最具伤害性的扰动,添加扰动后的对抗样本能够低于对抗变换防御。缺点替代模型的选择至关重要,未说明替代模型结构具体怎么选择的需要训练一个代理模型因此对目标模型的访问量会特别大方案没有明显指出迁移性提升的方式,仅显著提升了对抗样本能抵抗图像变形训练集潜在已知引言设计有效的对抗攻击方法能有在DNN-based 系统正式应用之前能够评估其鲁棒性,有效促进防御机制的发

2021-11-29 21:01:58 1681

原创 论文阅读—Meta Gradient Adversarial Attack

摘要:近年来,对抗性攻击的研究成为一个热点。虽然目前的基于转移的对抗性攻击研究在提高对不可见黑箱模型的transferability取得了很好的成果,但仍有很长的路要走。受元学习思想的启发,本文提出了一种新的体系结构——元梯度对抗性攻击(Meta Gradient Adversarial Attack, MGAA),该体系结构是一种可插即用的攻击方法,可以与任何现有的基于梯度的攻击方法集成,以提高跨模型的transferability。引言:近年来,随着神经网络的快速发展,神经网络的可靠性逐渐受到越来

2021-10-31 20:03:22 1022 2

原创 invalid index of a 0-dim tensor

存在的问题train.py:None (train.py)train.py:116: in print(“Epoch [%d/%d], Iter [%d/%d] Loss: %.4f” %(epoch+1, total_epoch, i+1, len(train_loader), loss.data[0]))E IndexError: invalid index of a 0-dim tensor. Use tensor.item() in Python or tensor.item<T&

2021-07-19 14:36:18 1291

原创 ImportError: cannot import name ‘imread‘

问题Traceback (most recent call last):File “C:/Users/HP-Desktop/Desktop/TAA-IoT-J-master/TAA-optimization/Train.py”, line 10, in from scipy.misc import imreadImportError: cannot import name ‘imread’解决:pip install scipy==1.2.1

2021-07-18 20:33:49 97

原创 new() received an invalid combination of arguments

面临的问题:E TypeError: new() received an invalid combination of arguments - got (float, int, int, int), but expected one of:E * (*, torch.device device)E * (torch.Storage storage)E * (Tensor other)E * (tuple of ints size, *, torch.device dev

2021-07-18 20:05:32 2658

原创 论文阅读——Residual Attention Network for Image Classification

发表位置: CVPR发表时间: 2018摘要作者提出了一种通过堆积Residual attention network,该网络可通过堆积多个attention module构成, 在该网络结中, attention-aware feature随着网络深度的变化而自适应改变,在attention module内部自底向上、自顶向上的前馈结构,将前馈和反馈注意力过程展开为单个前馈过程。背景先前的文献,主要是针对the mixed nature of attention的研究。注意力不仅用于选择一个fo

2021-07-18 11:00:36 532

原创 论文阅读——Training Very Deep Networks

发表位置:NIPS发表时间: 2015摘要理论和经验证据表明,神经网络的深度是其成功的关键。然而,随着深度的增加,训练变得更加困难,非常深的网络训练仍然是一个开放的问题。在这里,我们介绍了一个旨在克服这一问题的新体系结构。引言近年来,许多有监督机器学习取得的突破性成就都是通过大型和深度神经网络实现的。网络深度可能是这些成功中最重要的角色。例如,在短短几年内,在1000类ImageNet数据集上,前5位图像分类精度从84% 提高到95%,使用的是具有较小接受域的更深层次网络。在实际机器学习问题上的其

2021-07-16 21:37:58 318

原创 Deep Residual Learning for Image Recognition

发表位置: CVPR发表时间: 2016摘要作者提出了一种比 residual learning framework。引言深度卷积神经网络在图像分类方面取得了一系列突破。深度网络以端到端多层的方式自然地集成了低/中/高级特征和分类器,并且特征的级别可以通过堆叠层的数量(深度)来丰富。最近的证据表明网络深度是至关重要的,在具有挑战性的ImageNet数据集上的领先结果都利用了非常深的[40]模型,深度从16到30。许多其他非平凡的视觉识别任务也极大地受益于非常深的模型。在深度重要性的驱动下,一个

2021-07-15 20:59:47 169

原创 论文阅读——Black-box Adversarial Attacks with Limited Queries and Information

发表位置:35th International Conference on Machine Learning, ICML发表时间:2018摘要基于神经网络的分类器很容易受到对抗样本的影响,即使攻击者只有对模型的查询访问权。实际上,现实世界系统的威胁模型通常比典型的黑盒模型更有限制性,在黑盒模型中,对手可以在任意多个选择的输入上观察到网络的全部输出。在此,作者选择了三个真实的威胁模型:查询量有限、部分信息设置和仅标签有限。针对这三个问题,作者提出了一种新的黑盒攻击方法背景基于神经网络的图像分类器很容

2021-07-12 20:52:34 1736 1

原创 论文阅读——New algorithm to generate the adversarial example of image

发表位置:International Journal for Light and Electron Optics发表时间:2020摘要本文主要研究了图像对抗样本生成的算法,该方法首先提出一种新的记忆混沌映射,然后基于所构造的记忆性混沌映射,采用两个混沌序列设计生成图像对抗实例的算法。背景深度学习成功地在计算机视觉领域占有一席之地。2015年Goodfellow发现,深度神经网络可以有效地进行图像分类识别,但可能很容易被对抗实例[1]攻击。在非常轻微的干扰下,甚至人类的视觉都无法检测到,这些对抗性的

2021-07-12 09:16:34 103

原创 论文阅读——Fooling deep neural detection networks with adaptive object-oriented adversarial perturbation

发表位置:Pattern Recognition发表时间:2021摘要深度学习在处理复杂和专业的任务方面显示出了优越性,如计算机视觉、音频和语言处理等任务。然而,当前的研究工作已经证实深度神经网络(DNNs)很容易受到精心设计的对抗性干扰,这会导致DNNs在处理特定任务时产生混乱。在目标检测领域中,背景对目标分类的贡献很小,在背景中加入对抗扰动不会改善对抗样本欺骗深度神经检测模型的效果,但在生成对抗样本时会产生大量的失真。作者提出了Adaptive Object-oriented Adversari

2021-07-11 10:49:57 186

原创 论文阅读——Peephole: Predicting Network Performance Before Training

摘要(1)提出了一种统一的方式将各个层编码成向量,通过LSTM将它们组合在一起形成一个集成的描述。(2)利用递归网络强大的表达能力,可靠地预测各种网络结构的性能背景在过去的几年中,计算机视觉领域见证了一系列的突破。这一显著进展的背后是卷积神经网络的进步。从AlexNet, VGG, GoogLeNet,到ResNet,我们在改进网络设计方面取得了长足的进步,这也带来了显著的性能改进。以ILSVRC为例,分类错误率在短短几年内从15.3%下降到3%以下,这主要归功于网络架构的演变。如今,使用更好的网络

2021-07-10 10:54:52 335

原创 论文阅读——Adversarial attacks on Faster R-CNN object detector

发表位置: Neurocomputing CCF C刊发表时间:2020摘要提出一种PGD方法来表示Faster R-CNN的损失构造对抗样本背景由于深神经网络在语音和视觉识别任务,达到最先进的性能,研究人员开始使用神经网络应用于解决重要的现实问题。如,图像分类、对象发现、目标检测、人脸识别、自然语言处理、生化分析和恶意软件检测。然而,随着神经网络的日益广泛使用,敌手攻击神经网络的动机也在增加。然而,先前的研究表明,卷积神经网络对于对抗样本是脆弱的。这些对抗样本是有意干扰的输入,会被cnn错误分

2021-07-10 09:28:03 425

原创 论文阅读——Progressive Neural Architecture Search

摘要使用基于模型的顺序优化策略,在增加顺序搜索结构复杂度的同时,学习一个代理模型来指导结构空间的搜索背景最近,自动学习性能良好的神经网络结构受到广泛关注。目前,自动学习性能神经网络的技术主要分为两类:进化算法和强化学习。使用进化算法时,每个神经网络结构被编码为一个字符串,并在搜索过程中对字符串进行随机突变和重组;然后,每个字符串(模型)都在一个验证集上进行训练和评估,性能最好的模型会作为双亲,继续产生后代。当使用强化学习时,agent执行一系列动作,这些动作明确了模型的结构,然后对该模型进行训练,并将

2021-07-02 20:27:18 228

原创 论文阅读总结

论文阅读—Adversarial Attack against Urban Scene Segmentation for Autonomous Vehicles发表位置:IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS时间:2020

2021-05-26 20:21:28 203

原创 论文阅读—An Analysis of Adversarial Attacks and Defenses on Autonomous Driving Models

论文阅读—An Analysis of Adversarial Attacks and Defenses on Autonomous Driving Models访问地址:https://arxiv.org/abs/2002.02175时间:2020这篇文章通过在自动驾驶领域复现了五种对抗性攻击方法(IT-FGSM[16]、FGSM [7]、an optimization-based approach [36]、 AdvGAN [6]和AdvGAN Universal Adversarial Pert

2021-05-25 09:47:25 433

原创 论文阅读—Square Attack: a query-efficient black-box adversarial attack via random search

论文阅读—Square Attack: a query-efficient black-box adversarial attack via random search发表位置 ECCV 2020摘要作者提出了一种基于得分的黑盒Square attack,该模型不依赖于模型的局部梯度信息,因此可以绕过梯度隐藏防御攻击。Square Attack是一种随机搜索方法,它在随机位置选择局部的方形更新,使得每次迭代时扰动近似位于可行集的边界。背景当涉及到对安全至关重要的机器学习应用时,对抗性的例子尤其值得

2021-05-21 17:14:18 1988

原创 论文阅读—Adaptive Square Attack: Fooling Autonomous Cars with Adversarial Traffic Signs

论文阅读—Adaptive Square Attack: Fooling Autonomous Cars with Adversarial Traffic Signs发表位置: IEEE INTERNET OF THINGS JOURNAL, 2021论文网址:https://ieeexplore.ieee.org/document/9165820摘要交通标志识别能够了解路况,有助于自动驾驶汽车做出正确的驾驶决策,是现代自动驾驶汽车视觉系统中的重要组成部分。由于深度神经网络能够提取有效的视觉特征,有

2021-05-19 20:46:50 464

翻译 论文阅读—Synthesizing Robust Adversarial Examples

论文阅读—Synthesizing Robust Adversarial Examples发表位置:Proceedings of the 35 th International Conference on Machine Learning, PMLR, 2018摘要由于视角、摄像机噪声和其他自然变换的组合,使得先前的研究中用于神经网络生成对抗样本的方法不能欺骗物理世界中基于神经网络的分类器,限制了它们与真实世界之间的联系。作者证明了针对物理世界的对抗样本真实存在,并提出了第一个算法用于合成在选定的变换

2021-05-19 14:34:05 747

原创 论文阅读—Multi-Source Adversarial Sample Attack on Autonomous Vehicles

论文阅读—Multi-Source Adversarial Sample Attack on Autonomous Vehicles发表位置:IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY,2021摘要深度学习在自动驾驶汽车的目标检测和分类方面有着突出的表现。然而,深度学习模型对对抗样本的脆弱性导致自动驾驶汽车易遭受严重的安全威胁。虽然先前地研究者已经提出了一些针对对抗性样本的研究工作,但只有少数被指定用于自动驾驶汽车的场景。不仅如此,现有的对抗攻击模型只关注单个数

2021-05-18 19:34:00 228

原创 论文阅读—Targeted Attention Attack on Deep Learning Models in Road Sign Recognition

论文阅读—Targeted Attention Attack on Deep Learning Models in Road Sign Recognition (TAA)摘要物理世界的交通标志识别是制造自动驾驶汽车的重要一步,但大多数自动驾驶汽车都高度依赖于深度神经网络。然而,最近的研究表明,深度神经网络对对抗样本非常敏感。许多攻击方法被提出来理解和生成对抗样本,如基于梯度的攻击、基于分数的攻击、基于决策的攻击和基于转移的攻击。然而,因为迭代学习每帧摄动对于快速移动的汽车是不现实的且大多数优化算法平均遍

2021-05-17 15:50:59 510 1

原创 论文阅读—Robust Physical-World Attacks on Deep Learning Visual Classification

论文阅读—Robust Physical-World Attacks on Deep Learning Visual Classification发表位置: CVPR 2018摘要最近的研究表明,由于输入中添加了小幅度的扰动,致使深度神经网络(dnn)很容易受对抗样本的攻击。此外,新兴的物理系统在保证安全的情况下也会使用深度神经网络,因此,对抗样本可能会误导这些物理系统,产生无法计量的危险。因此,理解物理世界中的对抗攻击是开发弹性(resilient)学习算法的重要一步。因此,作者提出了一种通用的攻击

2021-05-17 09:19:31 529

原创 单通道图像转3通道图像,以fashionminist数据集为例

纠结了一晚上的结果,可不分享一下 避免你们踩坑如果使用如下方法都不起作用方法1image = np.expand_dims(a, axis=2)image = np.concatenate((image, image, image), axis=-1)参考链接 https://blog.csdn.net/jacke121/article/details/80086866方法2gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)参考链接 https://bl

2021-01-09 10:41:34 1794 1

原创 invalid gradient at index 0 - expected type TensorOptions

问题描述Traceback (most recent call last):File “D:\python\modelsmy\saliencymap.py”, line 24, in compute_jacobianoutput.backward(mask, retain_graph=True)RuntimeError: invalid gradient at index 0 - expected typeTensorOptions(dtype=float, device=cuda:0, layo

2020-12-25 17:15:23 10795 3

原创 ‘numpy.ndarray‘ object has no attribute ‘cuda‘

问题描述:Traceback (most recent call last):File “D:/python/modelsmy/trainvgg16.py”, line 93, in theta = deepfool(image, net)File “D:\python\modelsmy\deepfool.py”, line 13, in deepfoolimage = image.cuda()AttributeError: ‘numpy.ndarray’ object has no attri

2020-12-25 15:02:08 4891

原创 PIL.UnidentifiedImageError: cannot identify image file ‘./autozoomvgg\\results.csv‘

问题描述Traceback (most recent call last):File “D:/python/modelsmy/trainvgg16.py”, line 83, in train(net, train_dataSet, df_train, test_dataSet, df_test, optimizer, device, num_epochs)File “D:/python/modelsmy/trainvgg16.py”, line 49, in traintest_acc_top

2020-12-25 14:26:11 2137

原创 TypeError: kl_div(): argument ‘target‘ (position 2) must be Tensor, not numpy.int64

问题描述File “D:/python/modelsmy/trainvgg16.py”, line 77, in train(net, train_dataSet, df_train, test_dataSet, df_test, optimizer, device, num_epochs)File “D:/python/modelsmy/trainvgg16.py”, line 34, in trainl = loss(y_hat, y)TypeError: kl_div(): argument

2020-12-25 09:38:04 3202 1

原创 ValueError: only one element tensors can be converted to Python scalars

提取turple 中的tensorX= X[0]X为turple类型数据tensor 扩维度data = X[0].unsqueeze(0)

2020-12-25 09:24:55 1721

原创 TypeError: ‘module‘ object is not callable

TypeError: ‘module’ object is not callable存在问题原因:transform_train = transforms.Compose([# transforms.ToPILImage(),transforms.RandomCrop(32, padding=4),transforms.RandomHorizontalFlip(),transforms.RandomRotation(15),transforms.ToTensor(),transforms.N

2020-12-25 09:20:51 549

原创 pandas.errors.ParserError: Error tokenizing data. C error: Expected 1 fields in line 4, saw 2

问题描述Traceback (most recent call last):File “D:/python/modelsmy/trainvgg16.py”, line 57, in df_train = pd.read_csv(train_path)File “E:\tools\Anaconda\envs\py36\lib\site-packages\pandas\io\parsers.py”, line 688, in read_csvreturn _read(filepath_or_buffe

2020-12-24 21:48:53 1709

原创 ImportError: numpy.core.multiarray failed to import

问题描述 from torch._C import *ImportError: numpy.core.multiarray failed to import解决方案:主要是由于 torch pandas numpy matplotlib 版本不兼容造成的解决方法可参照如下:torch : 1.7.1+cu110matplotlib==3.3.3numpy == 1.15.4pandas ==1.1.5...

2020-12-24 21:30:10 445

原创 OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized. OMP: Hint

问题描述OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized.OMP: Hint This means that multiple copies of the OpenMP runtime have been linked into the program. That is dangerous, since it can degrade performance or cause

2020-12-20 17:47:03 253

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除