理工科专业精品书系列

原文地址: https://bbs.et8.net/bbs/showthread.php?t=938724

本人本科专业飞机设计。不过后来越搞越杂,飞机,汽车,船舶,坦克,混凝土。。。方面的课题全做过。搞到最后,突然发现,其实中国大学完全没必要把理工科专业分得那么细。想用这个贴子,把自己认为的专业精品书介绍一下。


一,先说数学。工科专业都用高等数学。其实不好。应直接用理科的数学分析。

数学分析_第二版_上册_复旦_1983
数学分析_第二版_下册_复旦_1983

这是两本好书。复旦的理科基础书大都写得非常好。看这两本书,比高等数学强多了。

 

在高等数学中,北大物理系出的三本书,很不错。

高等数学(物理类)第二册_文丽_2004
高等数学(物理类)第三册_文丽_2004
高等数学(物理类)第一册_文丽_2004

一直没明白,中国为什么所有高校不能用最好的书给学生上基础课。


接下来,是线性代数。好像本科都学线代,研究生时才学矩阵论。

其实,不如本科就直接学矩阵论。国内线代的书好的俺还没发现。

英文矩阵论,俺都发现一本好书:

Matrix Computations_3E_GH.Golub_1996,

这本书例子多,且跟matlab同步,看完这本书,做完例题,矩阵论基本懂了,matlab操作也会了。


再接下来,计算方法/数值分析。这个工科专业几乎都要用,且几乎所有教材书都很薄。大部分书只让你会这么计算,为什么?没说清。

中文书,北航出的俺认为最好,不厚,可写得非常好,方法来源,收剑性证明全有:

计算方法_颜庆津_1991

计算方法, 当年大家一致认为最容易学的. 其实最有用! 为什么? 因为数值模拟已成为很多专业的唯一方法. 有限元的基础概念之一, 就是插值.


计算方法的英文书,太多了,俺看过的有:

Numerical Methods for Engineers and Scientists_2E_JD.Hoffman_1991
Computing for Scientists and Engineers_WJ.Thompson_1992_Wiley
Engineering and Scientific Computations Using MATLAB _SE.Lyshevski_2003_Wiley


再下来,做为工科,数学物理方程,相当重要!

可惜,据我所知,大都工科专业的数理方程的书都很薄。这个实在说不过去!

中文数理的牛书如下:

数学物理方法_第三版_梁昆淼_1998
数学物理方程_第二版_复旦.谷超豪_2002
数学物理方法_第二版_郭敦仁_1991

可以这么说,这三本书看懂了,搞飞机的可以去搞电子,搞电子的可以去设计飞船。根本没有什么专业限制!


英文数理,牛书更多了:

Advanced Engineering Mathematics_2Ed_M.Greenberg_1998
Mathematical Methods for Physicists_6E_GB.Arfken_Elsevier_2005
Mathematical Methods in the Physical Sciences_2Ed_ML.Boas_1983

概率/统计/随机过程,这个也是重要的基础课。同样的,工科专业的书太薄了。

中文的,推荐复旦出的

概率论_第一册_概率论基础_复旦_1979

写得相当好!

概率论与数理统计_2版_浙大_盛骤_1989

这本书介绍的基础较粗。但写得很容易让人理解。也是本好书!

数理统计,好书有;

概率论及数理统计_第3版_上册_梁之舜
概率论及数理统计_第3版_下册_梁之舜
概率论及数理统计_上册_习题解答_许刘俊_1980
概率论及数理统计_下册_习题解答_许刘俊_1980

概率论与数理统计_李贤平_2003_(例题)

另外鬼子这本也不错:

概率论_伊藤清_1963

可是,上面这些书俺当初都是看完也没真懂。懂了再看才感觉他们是好书。俺当年数理统计突然有一天开窍了, 自认为自己全通了,就是看了这本书:

数理统计引论_陈希孺_1981


英文概率书,好书太多了。俺看过的的:

Applied Statistics and Probability for Engineers_3E_DC.Montgomery_200

Fundamentals of Probability and Statistics for Engineers_TT.Soong_2004

这个TT.Soong是个大牛。他的几本书都不错!

其实,概率论的基础是测度论. 可惜这个太数学了.

目前俺还没发现哪本书最好. 这本是最有名的:

测度论_PR.Halmos_1998

随机过程,相当的有用. 可是, 好书也是相当的少.

概率论_第三册_随机过程_复旦_1979

随机过程_伊藤清_1961

随机过程通论_上下_王梓坤_1996

随机模型及其应用_邓永录_1994

随机过程的英文书, 俺看过的有:

Applied Probability and Stochastic Processes_MK.Ochi_1990
这本书极好! 至少对俺这样的基础的人, 看得顺!

Applied Non-Gaussian Processes_M.Grigoriu_1995
这位是个大牛! 工程界搞可靠性/随机分析的, 他很牛.

A First Course In Stochastic Models_HC.Tijms_2003
一般的随机过程书, 写得缺三拉四, 作者自己可能都没搞懂. 这本书不错.

接下来, 随机性还没完, 随机微分方程, 这是最牛的! 谁如果搞懂了, 用在自己专业上, 那就是院士水平了. 当然,评上评不上, 在中国并不是看水平/智商了.

中文书, 就一本书, 还是完全翻译的! 可他们竟说自己是骗著. 两个北大教授在70 年代就这么无耻. 不过, 他们翻译的水平还中:

科学与工程中的随机微分方程_张柄根_1980

英文书, 随机微分方程, 俺看过的有

Randam Differential Equations in Science and Engineering_TT.Soong_1973
中译本: 科学与工程中的随机微分方程_张柄根_1980

Stochastic Calsulus_M.Grigoriu_2002

The Fokker-Plank Equations_1984_H.Risken

这个有什么用呢? 就是运在随机振动上! 飞机, 大桥, 摩天大楼, 都要用.

国内搞随机振动的, 就是朱位秋, 方同等人, 可他们写的书, 基本上就根本不想让你看懂. 当然, 人家起点高, 写的专著只说高深的. 这是另话.


随机还没搞得全通了, 接下来就自然要看模糊数学了:

中文书, 好书有:

模糊数学原理及应用_区奕勤_1988

成电的很多数学老师水平很高! 据我所知, 成电的本科生考上清华研究生的很多, 为什么? 他们的数学老师水平高!

模糊数学导论_刘旺金_1992

模糊集合论及其应用_汪培庄_1983

模糊集引论_上册_罗承忠_1989

模糊数学及其应用_水本雅晴_1986

英文模糊书, 太多了. 这本法国人的很有名, 可俺认为写得很差

Fuzzy Sets And Systems Theory And Applications_DJ.Dubois

这本, 北航蔡开沅教授写得, 中文版不知有没有, 这个英文版写得极好! 有水平!

Introduction to Fuzzy Reliability_Cai KY_1996


随机性看完,就要混沌了。先等一下。

数学分析,其实是实分析。所以,实分析完,就应复分析。

复变函数,相当重要!比如断裂力学吧,如果复变学得太少,断裂力学就学得慢!

复变,中文书,俺看过/认为最好的是:

复变函数_第四版_西安交大_1996, 很薄,却很棒!老上海交大的数学基础老师!西安交大,当年7/12系搬到了西安。基础课部全搬走了。这才是关键,使得西安交大的生源虽然不如上海交大了,可高考分数10-20分之差的,智商本无太大区别。

一个大学,最牛的首先应该是基础课部!

西安交大不比上海交大水平差,就是首先他们的基础课老师是正宗的老上海交大教师!

而西北工大与北航相比,北航的基础课部老师,水平明显高于西工大。

这本,;四川大学数学系的,也不错:

复变函数论_第三版_钟玉泉_2004
复变函数学习指导书_钟玉泉_1996

复变一学完,接下来, 应是常微与偏微了。这个当年俺本科学得太薄了。让俺越到后来越觉得亏大了。

当年自动控制,俺听说飞机主动控制是新方向,就把这本课当成了主课,花的时间比飞机结构设计一样多学时。整整一年!可惜根本没学透!为什么,一,老师太差!二,课本太差!

自控其实,只要把常微学透了,自控成就常微的应用而已而已。

所以,常微俺还真说不出哪本书好了。

常微没学透。偏微呢? 当年也没学透。不过,一直在用。特别是偏微的数值解法。因为有限元,就是解弹性力学偏微分方程呀!所以,偏微数值法的书,俺也一直再看。俺看过的/认为是好书的有:

物理学与偏微分方程_上册_李大潜_1997
物理学与偏微分方程_下册_李大潜_2000

这两本书看了,弹性力学就是小菜!就是其中的一章。

偏微分方程概貌_谷超豪_1989
应用偏微分方程_谷超豪_1993

仍是复旦大牛!写得好!

科学和工程中的偏微分方程数值解法_L.LAPIDUS_1989
 
弹性力学就是小菜!就是其中的一章,这里指的弹性力学,是原苏联体系的老弹性力学。

如果是美国的弹力,明显不中,水平还不够,基础尚太差!

另外,偏微数值解成了有限元,有限差分法,并不等于学了偏微就行了。有限元的基础,还有一个是泛函和变分法!

因此,接下来,所有工科可能都没开这门课:实变与泛函分析!

实变函数论与泛函分析_上册_夏道行,

这本书听人说很牛!俺当年买了,根本没看懂。就记住了夏道行这个名字!复旦大牛!

后来在美国Vanderbilt,才听说,夏大牛竟是数学系教授!牛呀!出来做访问学者,最后成了美国大学教授!

傅氏变换,

这个,做信号分析的,做振动分析的,都要用。

其实,最新的小波变换,与傅变思路是一样滴,就是基函数变了而已。

傅变俺还真说不上哪本书好。。。。但很重要!

说到小波了,好书中文的:

小波分析导论_崔锦泰_1995

这是国内最老的。不过写得一般。

俺认为还不如这两本译本:

小波十讲_I.Daubechies_2004
小波与傅里叶分析基础_A.Boggess_2004

英文小波书, 俺看过的有:

A Mathematical Introduction to Wavelets_P.Wojtaszczyk_1997

A Primer on Wavelets and Their Scientific Applications_JS.Walker_1999

An Introduction to Wavelet Analysis_DF.Walnut_2002

说到小波,又与随机过程有关了。

傅立叶变换,小波变换,加上最近本人才搞通的POD/K0L展开,都是要模拟随机过程/随机时间序列。

那本,随机场,就成了单独的一门了。

随机场,其实就是随机过程,但重点变成了数值模拟与重构。

好书一本:

Random Fields_Analysis and Synthesis_E.Vanmarcke_1983

由随机场,自然不得不到了混沌了。混沌又与常微方程密不可分了,而混沌的数值模拟,又与POD/K-L密切相关了。工程上就是流体力学最头痛的湍流!不过,你要问湍流的大牛们在搞什么?很多人正在搞湍流的POD分解!

混沌书:

混沌动力学_卢侃_1990

Strange Attractors, Creating Patterns in Chaos_JC.Sprott_1993

Chaos and Fractals_2ndEd_H-O.Peitgen_2004

说到混沌,又自然遇到了分形。分形几何,数学上很简单,可是真的很美妙!

分形俺看过的好书:

大自然的分形几何学_最新修订本_BB.Mandelbrot_1983

这本书英文原著/开山鼻祖,当年俺实在太忙了,本计划是要扫描的。

分形几何_数学基础及其应用_KJ.Falconer_2001,

这本英文原著的电子书俺有!

混沌,其实就是非线性动力学,又与振动联系起来了。

牛书俺看过的有:

非线性动力学中的现代分析方法_陈予恕,

嘿嘿,这本书当年俺在海淀图书城买了,放在桌子上,被狗熊看见了。狗熊的博士论文第一部分,一字不改一个公式不变地抄此书。。。。罪过呀。

非线性动力学数学方法_谢应齐_2000
物理学中的非线性方程_刘式适_2000

大学里上基础课的头两年,就这么些数学课要学好才行!!

对了,还忘了一个,微分几何

这门课当年俺没学,因为没人告诉俺它其实很重要!

微分几何,是张量分析的基础,张量分析,是连续介质力学的基础!连续介质力学要是学了,等于把弹性力学/流体力学全学了,且还是一步到位高起点!

有时想,中国的大学教授们,特别是那些系主任/校长们,真是猪头呀!!这么多年,愣是沿用前苏联的体制。比如弹性力学,竟仍用那本徐芝纶的书,太老了!!

好,微分几何的牛书,俺不知道是哪本,俺看过的有:

初等微分几何_苏步青_1885
微分几何初步.陈维桓

航空专业,数学基础学完了,就是上几大力学课了。理论力学,材料力学,弹性力学,结构力学,结构动力学/振动,断裂力学。。。。

理论力学,比如神五/神六/神七,算轨道要用。比如张庆伟,当年又学飞机设计/又懂自控的,就他一人!所以他就进了航天部,就成了少帅!

所以,数学课/专业课学好了,机会大大的!!

理论力学_上册_第五版_哈工大_1997
论力学解题指导_西工大.1982

理论力学解题指导及习题集_第二版_上册_哈工大_1984
理论力学解题指导及习题集_第二版_下册_哈工大_1999

接下来,是材料力学。这个是几大力学中,最好用的。为什么,因为数学简单,就是一个高等数学基础就行了。

材料力学的牛书,最牛的当属铁木大师!

材料力学_铁摩辛苦_1978.pdf

材料力学_I_第四版_孙训方_2006

孙先生的材力,是国内最早的。

材料力学_第二版_上册_苏翼林_1986 (天大的)

材料力学_第三版_上册_刘鸿文_1992确良(浙大的)

材料力学,太简单了。不多说了。

弹性力学,这个最搞。听说土木专业,研究生才上这门课。明天再讲。。。。待续。。

楼上各位兄弟好! 俺说的这些大学头两年的数学基础课, 不会只有航空院校才开吧??

继续讲, 弹性力学. 这是俺本科时重点课之一. 花了不少精气神. 当时考试90分. 其实根本没学透.

课本, 用的是徐芝纶老先生的弹性力学上下册, 此书多次得奖. 据说是中文书中最好的.

俺当时不识货呀, 只知道这弹力比材力难学多了. 理解的要学, 不理解的也要学. 多年后, 俺才明白了, 本来弹性力学非常非常简单, 徐这本书, 一开讲就是四大假设, 小变性, 线弹性, 各性同性. 如此简单, 三个月足矣, 可俺们愣是学了一年还没完全开窍. 当年认为是书好, 老师讲得不好. 现在看, 首先是书不好! 知识严重老化!!

这本书, 基本是沿用前苏联模式. 俺管它叫前苏弹力. 徐老先生其实是抄编. 苏联有个院士, 写的弹性力学, 那才叫大牛! 据说, 北大力学帮总舵主王仁王老前辈, 招博士生, 笔试后面试时, 会突然问你,

数学弹性力学的几个基本问题_НИ.Мусхелищвили_1958

这本书你看过没有?

如果你说没, 没看过, 面试马上停止. 下一个!

如果你说看过, 面试也马上停, 祝贺你, 你被录取了!!

现在俺想起这事, 由当年的景仰变成可笑! 北大力学系, 就这水平? 难怪穷得丁当响!!

好了, 前苏式弹性力学, 好书基本上就这两本了. 看起来费精气神. 就算胡子都白了/学懂了, 还仅仅是个线弹性! too simple!

前苏联弹性力学, 中文相关的好书还是有一些有, 比如这几本:

弹性理论_第2版_王龙甫_1984

基本上也是编抄式的. 竟还是科学出版社的.

弹性力学_杨桂通_1998, 杨是留苏副博士, 一辈子就是副博士水平了.

弹性力学题解_刘小明_2003, 竟把徐老先生书上的习题全解了. 牛!

好了, 北航某院士, 80了, 还只会材料力学. 弹性力学根本不懂. 不过, 他当年让俺学固体力学, 并推荐了一个大牛写的一本好书, 在此俺得先感谢他一下, 然后呢, 还要对他再说一下: 侬的水平太低了! 为什么? 因为他只知道有这两本固体力学, 愣是终生没看过连续介质力学. 所以他也就根本不会让俺看连续介质力学.

前两年这假院士装死, 最近好像又活过来了. 以80高龄上电视吹自己诗话科研人生. 唉, 当年只会材料力学的本科试验员, 混得这么爽不容易呀! 改改他的诗:

跨越小山过小河
人到八十不太多
弹性力学俺不懂
吹牛到死好自得

nn, 跑题了. 打住. 先说这固体力学的一本书吧, 大牛级的, 冯元桢:

Foundations of Solid Mechanics_YC.Fung_1965

由此书, 俺当时还查到了他的另一本简化版:

A First Course in Continuum Mechanics_3E_YC.Fung_1994

当年没有中译本, 俺是看过的英文原著! 花了三个月的时间, 看懂了! 有些开窍了! 并且第一次接触到张量!

俺当时的水平时, 看了冯的书, 理解了徐书上的所有弹性力学公式. 然后, 能把这些公式再用张量重新写一次. (当时俺认为张量真是脱了裤子打屁, 多此一举嘛!)

俺的张量书是:

连续介质力学的理论与习题_GE.Mase_1986

经年后, 当俺在美国, 给美国院士当TA, 看他根本不带书, 满黑板的用张量推公式, 俺服了! 这才叫大牛呀!!


美国院士开讲连续介质力学, 一共只用了六周时间, 就全部讲完了! 俺先是服得五体投地, 惊为天人! 然后想起俺在国内当年学弹性力学, 学固体力学, 花了那么多时间, 结果还是个半吊子水平, TNND, 娘XP!! 误人子弟, 无异于男盗女娼! 信乎!!

不过, 本人算是还有点狗屎运! 跟了这位货真价实的院士, 俺才算是终于开窍了! 什么固体流体, 什么非线性, 弹塑性, 分那么细真是蠢透了! 完全只看一本书就行了, 就是:

Continuum Mechanics

当然, 得先把张量搞得滚瓜烂熟!

这几天忙死了。。。。继续说:

现在终于说到连续介质力学了。航空、机械、土木等专业,开这门课的很少,这门课是苏联体制下纯力学系的专利。可纯力学系,大家都知道,80年代以后,高考都是些色盲呀,反正不是这有缺陷,就是哪不对劲的人才报考。

看看纯力学的书,基本上都是抄编国外的。连续介质力学方面的教材,太少了。

俺曾经认真的去北京科学出版社,高等教育出版社,(这两个出版社的书,基本上是最有质量的),找连续介质力学,没有!俺也去过北图,终于找到了,就是钱伟长先生译的书!

三钱之一的钱伟长,著名大右派,著名大力学家,“我国近代力学的奠基人之一”(官方语言),留美博士,清华大学前副校长。1958年反右,被打倒了。

打倒了一个钱伟长,于是就让全中国的力学教材,长期跟从前苏模型,用着前苏教材!
 

那些真正的科学大牛,都是些天才!也是些怪才!他们天生的聪慧!天生的鹤立鸡群!天生的桀骜不训!天生的,不该生在中国。生在中国,最要紧的天份,是要会混!而天才们,从来是不会混的!

看看钱伟长的译著:

0_张量分析_AC.Arigen_ 钱伟长译_1981_[江苏].pdf

连续统物理的基本原理_AC.Eringen_1985.pdf

说到这,曾经俺在某论坛大力建议办科技书库时,很多牛人曾经问过:那么多书看得过来吗?你一生中究竟能看几本书? 读书园地一个一辈子只会热分析的人,说俺在求书版求的书明显不是俺专业的。它以为俺一辈子就应只看几本飞机设计的书。

是呀,人的一生能看几本书?能看懂几本书?其实,应反过来问:

人的一生中,能看到几本精品书?

精书不在多,一本足矣。

可是,但是,然而,没人告诉我们精书在哪里!网络时代之前,我们只能去书店看新书,去图书馆看老书。

那么,发现精书,相当重要!

精书=经书!否则,就好比一个和尚,认真地念了一辈子经,到死时,才发现,没成佛的原因,是念的经不是真经,是歪经一本,一本歪经。。。。


在我认真地找张量分析+连续介质力学时,俺发现,钱伟长确实是个大牛!他还有本书,叫穿甲力学。

1969年中苏珍宝岛开战时,老毛子的坦克解放军的小钢炮根本穿不透了。此时,周总理想起了钱伟长。而他正在扫厕所呢。。。。。这也说明,当时的中国力学界,就他最牛!至少别人都算不出小钢炮怎么才能穿透苏联的新式坦克。。。。

他的小钢炮打坦克书看来是绝活:就凭这本书,怎么能把他打成右派,让他扫厕所呢。。。。唉!

穿甲力学_钱伟长_1984

小钢炮先放下。接着说张量与连续介质力学。除了大牛钱伟长,中国高校还有三个大牛,两个院士,一个多次报了院士没中:

一,清华力学总舵主,黄克智院士/黄老大牛!他当年留苏,据他自己说,马上就要博士答辩了,清华校方让他尽快回国参加社会主义建议,他就没要巨牛的苏联博士,回国了!这个俺实在不理解。当年中国留苏的学生,只有三个拿了正博士,其他的都是副博士。苏联的副博士=美国的博士,而正博士>美国的博士。

不过,黄回国后,马上参加了批判钱伟长的斗争,并成为清华新一代学术大牛。

二,北大的郭仲衡院士/郭总舵主!他是波兰博士。他的张量书,俺是越看越不敬重他!自创了与众不同的符号系统,写书的目的就是让俺们根本看不下去!这样的总舵主太高深了。

不过,他翻译的连续介质力学还不错。

三,西安交大匡振邦教授匡分舵主。俺认为他的水平很高。不过他写书的目的也是专门让你难受,专门让你花很多时间都看不下去。

说到这,中美学术大牛写书,风格根本不同!

美国学术大牛,写书的目的是让人看懂,专门/尽力地要把非常非常难的东东,说得非常非常简单,让你一下子就恍然大悟也!以此来证明他是大牛!

中国的学术大牛,写书的目的是让你看不懂,最好是你到死都没懂,死之前呢,还要告诉你,本来是一个非常非常简单的东东,结果你愣是没看明白,以此证明你很笨,而大牛很聪明!

幸好,这个世界上,还有美国大牛。否则学术还真成了中国武术,独门独户,舵主要等临死前一口气,才把绝活传给久经考验的唯一的一个接班人。如果有个偏差,没传下来,就成了失传的中华武功了。。。。。

2008-07-24 未完待续

1 Vector Analysis 1 1.1 Definitions, Elementary Approach 1 1.2 Rotation of the Coordinate Axes 7 1.3 Scalar or Dot Product 12 1.4 Vector or Cross Product 18 1.5 Triple Scalar Product, Triple Vector Product 25 1.6 Gradient, V 32 1.7 Divergence, V 38 1.8 Curl, Vx 43 1.9 Successive Applications of V 49 1.10 Vector Integration 54 1.11 Gauss' Theorem 60 1.12 Stokes' Theorem 64 1.13 Potential Theory 68 1.14 Gauss' Law, Poisson's Equation 79 1.15 Dirac Delta Function 83 1.16 Helmholtz's Theorem 95 Additional Readings 101 2 Vector Analysis in Curved Coordinates and Tensors 103 2.1 Orthogonal Coordinates in R3 103 2.2 Differential Vector Operators 110 2.3 Special Coordinate Systems: Introduction 114 2.4 Circular Cylinder Coordinates 115 2.5 Spherical Polar Coordinates 123 ν 2.6 Tensor Analysis 133 2.7 Contraction, Direct Product 139 2.8 Quotient Rule 141 2.9 Pseudotensors, Dual Tensors 142 2.10 General Tensors 151 2.11 Tensor Derivative Operators 160 Additional Readings 163 3 Determinants and Matrices 165 3.1 Determinants 165 3.2 Matrices 176 3.3 Orthogonal Matrices 195 3.4 Hermitian Matrices, Unitary Matrices 208 3.5 Diagonalization of Matrices 215 3.6 Normal Matrices 231 Additional Readings 239 4 Group Theory 241 4.1 Introduction to Group Theory 241 4.2 Generators of Continuous Groups 246 4.3 Orbital Angular Momentum 261 4.4 Angular Momentum Coupling 266 4.5 Homogeneous Lorentz Group 278 4.6 Lorentz Covariance of Maxwell's Equations 283 4.7 Discrete Groups 291 4.8 Differential Forms 304 Additional Readings 319 5 Infinite Series 321 5.1 Fundamental Concepts 321 5.2 Convergence Tests 325 5.3 Alternating Series 339 5.4 Algebra of Series 342 5.5 Series of Functions 348 5.6 Taylor's Expansion 352 5.7 Power Series 363 5.8 Elliptic Integrals 370 5.9 Bernoulli Numbers, Euler-Maclaurin Formula 376 5.10 Asymptotic Series 389 5.11 Infinite Products 396 Additional Readings 401 6 Functions of a Complex Variable I Analytic Properties, Mapping 403 6.1 Complex Algebra 404 6.2 Cauchy-Riemann Conditions 413 6.3 Cauchy's Integral Theorem 418 Contents vii 6.4 Cauchy's Integral Formula 425 6.5 Laurent Expansion 430 6.6 Singularities 438 6.7 Mapping 443 6.8 Conformal Mapping 451 Additional Readings 453 7 Functions of a Complex Variable II 455 7.1 Calculus of Residues 455 7.2 Dispersion Relations 482 7.3 Method of Steepest Descents 489 Additional Readings 497 8 The Gamma Function (Factorial Function) 499 8.1 Definitions, Simple Properties 499 8.2 Digamma and Polygamma Functions 510 8.3 Stirling's Series 516 8.4 The Beta Function 520 8.5 Incomplete Gamma Function 527 Additional Readings 533 9 Differential Equations 535 9.1 Partial Differential Equations 535 9.2 First-Order Differential Equations 543 9.3 Separation of Variables 554 9.4 Singular Points 562 9.5 Series Solutions—Frobeniusy Method 565 9.6 A Second Solution 578 9.7 Nonhomogeneous Equation—Green's Function 592 9.8 Heat Flow, or Diffusion, PDF 611 Additional Readings 618 10 Sturm-Liouville Theory—Orthogonal Functions 621 10.1 Self-Adjoint ODEs 622 10.2 Hermitian Operators 634 10.3 Gram-Schmidt Orthogonalization 642 10.4 Completeness of Eigenfunctions 649 10.5 Green's Function—Eigenfunction Expansion 662 Additional Readings 674 11 Bessel Functions 675 11.1 Bessel Functions of the First Kind, Jv(x) 675 11.2 Orthogonality 694 11.3 Neumann Functions 699 11.4 Hankel Functions 707 11.5 Modified Bessel Functions, Iv(x) and Kv(x) 713 11.6 Asymptotic Expansions 719 11.7 Spherical Bessel Functions 725 Additional Readings 739 12 Legendre Functions 741 12.1 Generating Function 741 12.2 Recurrence Relations 749 12.3 Orthogonality 756 12.4 Alternate Definitions 767 12.5 Associated Legendre Functions 771 12.6 Spherical Harmonics 786 12.7 Orbital Angular Momentum Operators 793 12.8 Addition Theorem for Spherical Harmonics 797 12.9 Integrals of Three Y's 803 12.10 Legendre Functions of the Second Kind 806 12.11 Vector Spherical Harmonics 813 Additional Readings 816 13 More Special Functions 817 13.1 Hermite Functions 817 13.2 Laguerre Functions 837 13.3 Chebyshev Polynomials 848 13.4 Hypergeometric Functions 859 13.5 Confluent Hypergeometric Functions 863 13.6 Mathieu Functions 869 Additional Readings 879 14 Fourier Series 881 14.1 General Properties 881 14.2 Advantages, Uses of Fourier Series 888 14.3 Applications of Fourier Series 892 14.4 Properties of Fourier Series 903 14.5 Gibbs Phenomenon 910 14.6 Discrete Fourier Transform 914 14.7 Fourier Expansions of Mathieu Functions 919 Additional Readings 929 15 Integral Transforms 931 15.1 Integral Transforms 931 15.2 Development of the Fourier Integral 936 15.3 Fourier Transforms—Inversion Theorem 938 15.4 Fourier Transform of Derivatives 946 15.5 Convolution Theorem 951 15.6 Momentum Representation 955 15.7 Transfer Functions 961 15.8 Laplace Transforms 965 Contents ix 15.9 Laplace Transform of Derivatives 971 15.10 Other Properties 979 15.11 Convolution (Faltungs) Theorem 990 15.12 Inverse Laplace Transform 994 Additional Readings 1003 16 Integral Equations 1005 16.1 Introduction 1005 16.2 Integral Transforms, Generating Functions 1012 16.3 Neumann Series, Separable (Degenerate) Kernels 1018 16.4 Hilbert-Schmidt Theory 1029 Additional Readings 1036 17 Calculus of Variations 1037 17.1 A Dependent and an Independent Variable 1038 17.2 Applications of the Euler Equation 1044 17.3 Several Dependent Variables 1052 17.4 Several Independent Variables 1056 17.5 Several Dependent and Independent Variables 1058 17.6 Lagrangian Multipliers 1060 17.7 Variation with Constraints 1065 17.8 Rayleigh-Ritz Variational Technique 1072 Additional Readings 1076 18 Nonlinear Methods and Chaos 1079 18.1 Introduction 1079 18.2 The Logistic Map 1080 18.3 Sensitivity to Initial Conditions and Parameters 1085 18.4 Nonlinear Differential Equations 1088 Additional Readings 1107 19 Probability 1109 19.1 Definitions, Simple Properties 1109 19.2 Random Variables 1116 19.3 Binomial Distribution 1128 19.4 Poisson Distribution 1130 19.5 Gauss'Normal Distribution 1134 19.6 Statistics 1138 Additional Readings 1150 General References 1150
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值