论文解读《Intent Contrastive Learning for Sequential Recommendation》

该文提出意图对比学习(ICL)框架,旨在改善序列推荐模型。通过对用户行为序列进行聚类来捕捉潜在意图,ICL优化推荐模型以考虑用户意图,通过对比学习提升兴趣表示。实验部分验证了ICL的有效性。
摘要由CSDN通过智能技术生成

一、摘要

用户与物品的互动是由各种意图驱动的,但用户的潜在意图往往是不被观察到的,因此很难利用这些潜在意图进行序列推荐(SR)。本文提出了意图对比学习(ICL),通过聚类将潜在意图变量引入SR。其核心思想是从未标记的用户行为序列中学习用户的意图分布函数,并通过考虑学习的意图来优化SR模型,从而改进推荐模型。
本文主要是针对用户的兴趣表征进行聚类,然后以簇中心代表用户意图,根据用户意图和用户兴趣表征构建损失函数,并且结合原有的序列损失函数和对比学习损失函数构建多任务损失函数。

二、方案

2.1、定义

在这里插入图片描述
固定长度T,序列长了就裁剪,短了就补全。

2.2、序列建模(Next Item Prediction)

在这里插入图片描述
对一个序列,每次前t个构成的子序列来预测第t+1个商品,负样本s_neg为随机采样得到,因此可以建模如下:
在这里插入图片描述
等效于最小化自

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值