一、摘要
用户与物品的互动是由各种意图驱动的,但用户的潜在意图往往是不被观察到的,因此很难利用这些潜在意图进行序列推荐(SR)。本文提出了意图对比学习(ICL),通过聚类将潜在意图变量引入SR。其核心思想是从未标记的用户行为序列中学习用户的意图分布函数,并通过考虑学习的意图来优化SR模型,从而改进推荐模型。
本文主要是针对用户的兴趣表征进行聚类,然后以簇中心代表用户意图,根据用户意图和用户兴趣表征构建损失函数,并且结合原有的序列损失函数和对比学习损失函数构建多任务损失函数。
二、方案
2.1、定义
固定长度T,序列长了就裁剪,短了就补全。
2.2、序列建模(Next Item Prediction)
对一个序列,每次前t个构成的子序列来预测第t+1个商品,负样本s_neg为随机采样得到,因此可以建模如下:
等效于最小化自