论文解读:多任务学习之PLE算法

本文介绍了多任务学习的重要性和业界现状,探讨了负迁移和跷跷板现象。提出了CGC和PLE两种网络结构,以解决相关性较差任务的优化问题。PLE网络结构在多层扩展了CGC,并在实验中展现出优于MMoE的效果,特别是在浏览量和观看时长上的提升。
摘要由CSDN通过智能技术生成

一、背景

在推荐领域,多目标已经成为了业界的主流,各大公司的各种业务场景,基本都是基于多目标的框架来搭建推荐系统。然而在现有的多目标模型中,很难同时对多个目标进行优化,通常会出现负迁移(negative transfer)和跷跷板现象(seesaw phenomenon)。

1.1、为什么要多目标建模

  1. 多任务场景下,多个任务会从不同的角度学习特征,增强模型泛化能力来提升收益,最常见的就是通过增加优化目标,比如在信息流推荐领域中的点击,时长,评论,点赞等多个维度,比如在电商领域的点击和转化;
  2. 共享参数,不额外增加资源的前提下变相增加参数规模。推荐系统的核心是embedding,对于相关的多个目标,比如点击/时长等,用户及相关特征的重合或者接近的,多个任务共享这部分参数可以极大的节省离线和在线资源;
  3. 用数据更多的任务指导学习数据较少的任务。一般常见的就是某个任务的数据量较少,期望能通过大数据训练较好的模型指导稀疏数据场景下的模型,比如点击率和转化率,一跳场景和二跳场景;
  4. 冷启模型的快速收敛。将冷启模型和收敛模型同时训练,帮助冷启模型可以在一个相对正确的方向上快速收敛;
  5. 有更多反馈和指导的模型指导学习其他模型。最常见的就是在精排阶段或者重排序阶段有一些"精准"评分用来指导更上层的粗排或者召回模型;
  6. 多个模型合并为一个模型后的线上资源多路请求可以合并为一路,减少请求资源;
  7. 减少多模型的维护成本。有很多策略和架构同学减少维护多个"相
  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值