各个变量之间的关系,以及应用场景
衡量变量之间相关性用什么系数
附:
Pearson相关系数:用于衡量两个连续变量之间的线性相关性,取值范围为-1到1之间。当两个变量完全正相关时,Pearson相关系数为1;当两个变量完全负相关时,Pearson相关系数为-1;当两个变量不相关时,Pearson相关系数为0。
Spearman等级相关系数:用于衡量两个有序变量之间的相关性,取值范围为-1到1之间。Spearman等级相关系数是通过将原始数据转换为等级数据,然后计算等级数据之间的Pearson相关系数得到的。
判定系数(R²):用于衡量一个因变量和一个或多个自变量之间的相关性,取值范围为0到1之间。判定系数表示因变量的变异中可以被自变量解释的比例,判定系数越接近1,表示自变量对因变量的解释能力越强。
列联表卡方检验:用于衡量两个分类变量之间的相关性,可以通过计算列联表中观察值与期望值之间的差异来判断两个变量之间是否存在相关性。
Eta是关联度的一个统计量,取值是在0和1之间,接近于1表示两个变量高度关联,越接近0表示两个变量关联度很低