连续、离散、定序、定类、有序、分类等变量区别

文章探讨了衡量变量间关系的不同统计方法,包括Pearson相关系数用于连续变量的线性相关性分析,Spearman等级相关系数处理有序变量,判定系数(R²)衡量自变量对因变量的解释力,以及卡方检验在分类变量相关性中的应用。Eta作为关联度统计量,提供了变量关联程度的量化评估。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

各个变量之间的关系,以及应用场景

在这里插入图片描述

衡量变量之间相关性用什么系数

在这里插入图片描述

附:

Pearson相关系数:用于衡量两个连续变量之间的线性相关性,取值范围为-1到1之间。当两个变量完全正相关时,Pearson相关系数为1;当两个变量完全负相关时,Pearson相关系数为-1;当两个变量不相关时,Pearson相关系数为0。

Spearman等级相关系数:用于衡量两个有序变量之间的相关性,取值范围为-1到1之间。Spearman等级相关系数是通过将原始数据转换为等级数据,然后计算等级数据之间的Pearson相关系数得到的。

判定系数(R²):用于衡量一个因变量和一个或多个自变量之间的相关性,取值范围为0到1之间。判定系数表示因变量的变异中可以被自变量解释的比例,判定系数越接近1,表示自变量对因变量的解释能力越强。

列联表卡方检验:用于衡量两个分类变量之间的相关性,可以通过计算列联表中观察值与期望值之间的差异来判断两个变量之间是否存在相关性。

Eta是关联度的一个统计量,取值是在0和1之间,接近于1表示两个变量高度关联,越接近0表示两个变量关联度很低

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值