⭐⭐⭐⭐⭐【LCA模板题】PAT A1151 LCA in a Binary Tree

题目描述

在这里插入图片描述

知识点

树的遍历

实现

码前思考

  1. 这道题和之前的某道题很像,但是那道题是BST;
  2. 由于我是一个不会变通的人,所以我就把这个二叉树变成了BST,😓。根据中序遍历,对结点值重新编号。。。之后操作就跟原来那道题一样了。。。

代码实现

#include "bits/stdc++.h"
using namespace std;
const int maxn = 1e4+10;

//将二叉树映射成BST
unordered_map<int,int> mp;
//将BST映射为二叉树 
int rev[maxn]; 
int pre[maxn];
int m;
int n;

int main(){
	scanf("%d %d",&m,&n);
	for(int i=1;i<=n;i++){
		int key;
		scanf("%d",&key);
		mp[key] = i;
		rev[i] = key;
	}
	
	//下面是先序遍历
	for(int i=0;i<n;i++){
		int key;
		scanf("%d",&key);
		pre[i] = mp[key];
	}
	
	//接下来是判断
	for(int i=0;i<m;i++){
		int u;
		int v;
		scanf("%d %d",&u,&v);
		if(mp.count(u) == 0 && mp.count(v) == 0){
			printf("ERROR: %d and %d are not found.\n",u,v);
		}else if(mp.count(u) != 0 && mp.count(v) == 0){
			printf("ERROR: %d is not found.\n",v);
		}else if(mp.count(u) == 0 && mp.count(v) != 0){
			printf("ERROR: %d is not found.\n",u);
		}else{
			//就去遍历
			int mpu = mp[u];
			int mpv = mp[v];
			int father;
			for(int i=0;i<n;i++){
				if(pre[i] >= mpu && pre[i] <= mpv || pre[i] <= mpu && pre[i] >= mpv ){
					//出现了这种分叉的情况
					father = pre[i];
					break; 
				}
			}
			//映射回去
			int root = rev[father];
			if(root == u){
				printf("%d is an ancestor of %d.\n",u,v);
			}else if(root == v){
				printf("%d is an ancestor of %d.\n",v,u);
			}else{
				printf("LCA of %d and %d is %d.\n",u,v,root);	
			}
		}
	} 
	
	return 0;
} 

码后反思

  1. 我还是太菜了,柳神是利用中序和前序进行遍历得到结果的:
    在这里插入图片描述

    #include <iostream>
    #include <vector>
    #include <map>
    using namespace std;
    map<int, int> pos;
    vector<int> in, pre;
    void lca(int inl, int inr, int preRoot, int a, int b) {
        if (inl > inr) return;
        int inRoot = pos[pre[preRoot]], aIn = pos[a], bIn = pos[b];
        if (aIn < inRoot && bIn < inRoot)
            lca(inl, inRoot-1, preRoot+1, a, b);
        else if ((aIn < inRoot && bIn > inRoot) || (aIn > inRoot && bIn < inRoot))
            printf("LCA of %d and %d is %d.\n", a, b, in[inRoot]);
        else if (aIn > inRoot && bIn > inRoot)
            lca(inRoot+1, inr, preRoot+1+(inRoot-inl), a, b);
        else if (aIn == inRoot)
                printf("%d is an ancestor of %d.\n", a, b);
        else if (bIn == inRoot)
                printf("%d is an ancestor of %d.\n", b, a);
    }
    int main() {
        int m, n, a, b;
        scanf("%d %d", &m, &n);
        in.resize(n + 1), pre.resize(n + 1);
        for (int i = 1; i <= n; i++) {
            scanf("%d", &in[i]);
            pos[in[i]] = i;
        }
        for (int i = 1; i <= n; i++) scanf("%d", &pre[i]);
        for (int i = 0; i < m; i++) {
            scanf("%d %d", &a, &b);
            if (pos[a] == 0 && pos[b] == 0)
                printf("ERROR: %d and %d are not found.\n", a, b);
            else if (pos[a] == 0 || pos[b] == 0)
                printf("ERROR: %d is not found.\n", pos[a] == 0 ? a : b);
            else
                lca(1, n, 1, a, b);
        }
        return 0;
    }
    

    需要存储数字所在的位置;

  2. 我发现了原来PAT这种根据先,中,后序列来做题的题,一般都不用建树!!!

二刷代码

学会了不用建树的代码,其实我们想要的只是遍历,那么根本不用建树,因为序列已经能够帮助我们遍历了。本题的关键就是在于寻找第一个使得两者不在同一棵树上的结点:

//建树的过程相当于先序遍历,那么我们可以看在哪一步对其进行了分割 
#include <iostream>
#include <unordered_map> 
#include <algorithm>
using namespace std;
const int maxn = 1010;

unordered_map<int,int> mp;
int in[maxn];
int pre[maxn];
int u,v; 
int pos;
bool flag=false; 

void create(int preL,int preR,int inL,int inR){
	if(flag){
		return;
	}
	
	if(preL>preR){
		return;//其实这句话应该是没用的 
	}
	
	int root = pre[preL];
	int k;
	for(k=inL;k<=inR;k++){
		if(root==in[k]){
			break;
		}
	}
	
	//那么找到了k的方位
	if(!((mp[u]>k&&mp[v]>k)||mp[u]<k&&mp[v]<k)){//说明这时不在一棵树上了 
		pos=k;
		flag=true;
		return;
		
	}else{
		//继续递归
		int numLeft = k-inL;
		create(preL+1,preL+numLeft,inL,k-1);
		create(preL+numLeft+1,preR,k+1,inR); 
	} 
	
	return;
}

int main(){
	int m,n;
	scanf("%d %d",&m,&n);
	for(int i=0;i<n;i++){
		scanf("%d",&in[i]);
		mp[in[i]] = i;		
	}
	
	for(int i=0;i<n;i++){
		scanf("%d",&pre[i]);
	}
	
	for(int i=0;i<m;i++){
		flag=false;
		pos=-1;
		scanf("%d %d",&u,&v);
		if(mp.count(u)==0 && mp.count(v)==0){
			printf("ERROR: %d and %d are not found.\n",u,v);
		}else if(mp.count(u)==0){
			printf("ERROR: %d is not found.\n",u);
		}else if(mp.count(v)==0){
			printf("ERROR: %d is not found.\n",v);
		}else{
			//说明都存在在树上
			create(0,n-1,0,n-1); 
			printf("%d %d\n",pos,in[pos]);
			if(in[pos]==u){
				printf("%d is an ancestor of %d.\n",u,v);
			}else if(in[pos]==v){
				printf("%d is an ancestor of %d.\n",v,u);				
			}else{
				printf("LCA of %d and %d is %d.\n",u,v,in[pos]);
			}
		}
	}
	
	return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值