【PAT】A1151 LCA in a Binary Tree【LCA】

The lowest common ancestor (LCA) of two nodes U and V in a tree is the deepest node that has both U and V as descendants.

Given any two nodes in a binary tree, you are supposed to find their LCA.

Input Specification:

Each input file contains one test case. For each case, the first line gives two positive integers: M (≤ 1,000), the number of pairs of nodes to be tested; and N (≤ 10,000), the number of keys in the binary tree, respectively. In each of the following two lines, N distinct integers are given as the inorder and preorder traversal sequences of the binary tree, respectively. It is guaranteed that the binary tree can be uniquely determined by the input sequences. Then M lines follow, each contains a pair of integer keys U and V. All the keys are in the range of int.

Output Specification:

For each given pair of U and V, print in a line LCA of U and V is A. if the LCA is found and A is the key. But if A is one of U and V, print X is an ancestor of Y. where X is A and Y is the other node. If U or V is not found in the binary tree, print in a line ERROR: U is not found. or ERROR: V is not found. or ERROR: U and V are not found…

Sample Input:

6 8
7 2 3 4 6 5 1 8
5 3 7 2 6 4 8 1
2 6
8 1
7 9
12 -3
0 8
99 99

Sample Output:

LCA of 2 and 6 is 3.
8 is an ancestor of 1.
ERROR: 9 is not found.
ERROR: 12 and -3 are not found.
ERROR: 0 is not found.
ERROR: 99 and 99 are not found.

题意

查找两个值所在结点点的LCA。(如果两个值都在树中的话)

思路

根据题给的前序序列和中序序列建树,然后dfs搜索即可。注意dfs搜索的时候是从最下层往上冒泡式return,所以找到两个值的第一个结点就是它们的LCA。

代码

#include <iostream>
#include <vector>
#include <algorithm>
#include <map>
#include <vector>
#define MAX_N 10005
using namespace std;
struct Node{
    Node*left, *right;
    int value, height;
    Node(int value, int height) : value(value), left(NULL), right(NULL),height(height){};
}*root;
int pre[MAX_N], in[MAX_N];
int N, k = 0;
// 递归建树
Node* build(int inStart, int inEnd, int height){
    if(inStart >= inEnd) return NULL;
    int root = pre[k++], i = inStart;
    Node* x = new Node(root, height);
    while(i < inEnd && in[i] != root) i++;
    x->left = build(inStart, i, height + 1);
    x->right = build(i + 1, inEnd, height + 1);
    return x;
}
// 封装了一下,供最外层使用
Node* build(int inStart, int inEnd){
    return build(NULL, inStart, inEnd, 0);
}

int LCA = -1;
// flag1,flag2分别表示是否查找到了u, v
int search(Node*x, int u, int v, bool& flag1, bool& flag2){
    if(x == NULL) return 0;
    // cnt为找到的结点个数
    int cnt = search(x->left, u, v, flag1, flag2) + search(x->right, u, v, flag1, flag2);
    if(x->value == u){
        flag1 = true;
        cnt++;
    }
    if(x->value == v){
        flag2 = true;
        cnt++;
    }
    if(LCA == - 1 && cnt == 2){// 找到了两个结点,那么找到两个结点的最底层就是LCA,上层则不会再赋值(因为赋值一次后LCA就不是-1了)
        LCA = x->value;
    }
    return cnt;
}
int main() {
    int M;
    scanf("%d %d", &M, &N);
    for(int i = 0; i < N; i++){
        scanf("%d", &in[i]);
    }
    for(int i = 0; i < N; i++){
        scanf("%d", &pre[i]);
    }
    root = build( 0, N);
    
    
    bool flag1, flag2;
    for(int i = 0, u, v; i < M; i++){
        scanf("%d %d", &u, &v);
        // 不要忘记初始化
        LCA = -1;
        flag1 = false;
        flag2 = false;
        
        // 递归搜索
        search(root, u, v, flag1, flag2);
        if(!flag1 && !flag2){
            printf("ERROR: %d and %d are not found.\n", u, v);
            continue;
        }else if(!flag1){
            printf("ERROR: %d is not found.\n", u);
            continue;
        }else if(!flag2){
            printf("ERROR: %d is not found.\n", v);
            continue;
        }
        
        if(LCA == u){
            printf("%d is an ancestor of %d.\n", u, v);
        }else if(LCA == v){
            printf("%d is an ancestor of %d.\n", v, u);
        }else{
            printf("LCA of %d and %d is %d.\n", u, v, LCA);
        }
    }
    
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值