题目描述
求一个图是否是树,不是树输出连通分量个数。是树,输出最长路径。
知识点
图的DFS+BFS遍历
实现
码前思考
- 打算DFS求连通分量,对每个点BFS求最大深度。BFS经常用来求深度的,很好用的。。。
代码实现
//DFS+BFS进行解题
//DFS用于判断连通分量
//BFS用于判断层数
//数组下标从1开始
//考虑边界情况,比如只有一个结点
#include <cstdio>
#include <vector>
#include <queue>
#include <algorithm>
using namespace std;
const int maxn = 1e4+10;
vector<int> adj[maxn];
vector<int> res;
int n;
int cnt=0;
bool vis[maxn];
int maxDepth=-1;
bool dfs(int x){
vis[x] = true;
for(int i=0;i<adj[x].size();i++){
if(vis[adj[x][i]] == false){
dfs(adj[x][i]);
}
}
}
//计算x为根结点的树的高度
void bfs(int x){
queue<int> q;
fill(vis,vis+maxn,false);
q.push(x);
vis[x]=true; //注意入队就要设置true
int depth=0;
while(!q.empty()){
depth++;
int size = q.size();
for(int i=0;i<size;i++){
int cur = q.front();
q.pop();
for(int j=0;j<adj[cur].size();j++){
int v = adj[cur][j];
if(vis[v]==false){
q.push(v);
vis[v]=true;
}
}
}
}
//神奇
if(depth>maxDepth){
maxDepth=depth;
res.clear();
res.push_back(x);
}else if(depth == maxDepth){
res.push_back(x);
}
return;
}
int main(){
scanf("%d",&n);
int u,v;
for(int i=0;i<n-1;i++){
scanf("%d %d",&u,&v);
adj[u].push_back(v);
adj[v].push_back(u);
}
fill(vis,vis+maxn,false);
for(int i=1;i<=n;i++){
if(vis[i] == false){
dfs(i);
cnt++;
}
}
if(cnt!=1){
printf("Error: %d components",cnt);
return 0;
}else{
//对于每一个点,作为根结点进行bfs
for(int i=1;i<=n;i++){
bfs(i);
}
sort(res.begin(),res.end());
for(int i=0;i<res.size();i++){
printf("%d\n",res[i]);
}
}
return 0;
}
码后反思
- 之前粗心,把
else if(depth == maxDepth)
直接写成了else
,导致没过题,但是居然拿了11分,这测试数据有点弱呀。。。
二刷代码
二刷的时候没有想到BFS常用于求层数了!!!这很危险!!!很多最短路径都是可以使用BFS进行求解的。
这里就用了两个DFS求解了。
//从1开始编号
#include <iostream>
#include <climits>
#include <vector>
#include <algorithm>
using namespace std;
const int maxn = 1e4+10;
int n;
vector<int> adj[maxn];
bool vis[maxn]; //表示是否访问
int cnt=0; //记录连同分量的数量
vector<int> ans; //最大的结点
int maxVal;
int curMaxVal;
void dfs(int u,int depth){
vis[u] = true;
if(depth>curMaxVal){
curMaxVal = depth;
}
for(int i=0;i<adj[u].size();i++){
int v = adj[u][i];
if(vis[v]==false){
dfs(v,depth+1);
}
}
}
int main(){
scanf("%d",&n);
for(int i=0;i<n-1;i++){
int u,v;
scanf("%d %d",&u,&v);
adj[u].push_back(v);
adj[v].push_back(u);
}
//首先判断是否连通吧
fill(vis,vis+maxn,false);
ans.clear();
maxVal=INT_MIN;
cnt=0;
for(int i=1;i<=n;i++){
if(vis[i]==false){
cnt++;
dfs(i,1);
}
}
if(cnt>1){
printf("Error: %d components\n",cnt);
return 0;
}
maxVal=INT_MIN;
ans.clear();
for(int i=1;i<=n;i++){
//对这个点进行dfs访问
fill(vis,vis+maxn,false);
curMaxVal=1;
dfs(i,1);
if(curMaxVal > maxVal){
ans.clear();
maxVal = curMaxVal;
ans.push_back(i);
}else if(curMaxVal == maxVal){
ans.push_back(i);
}
}
for(int i=0;i<ans.size();i++){
printf("%d\n",ans[i]);
}
return 0;
}