LeetCode 72. Edit Distance【编辑距离+字符串动态规划+二维数组】⭐⭐⭐⭐⭐

题目描述

在这里插入图片描述

知识点

编辑距离、字符串动态规划、二维数组

结果

在这里插入图片描述

实现

码前思考

  1. 这道题目是典型地从暴力解法里面提炼动态规划思想的问题。与背包问题有着异曲同工之妙~~都使用了二维的数组,都是递推实现的;
  2. 关于这道题目的详细的解题方案可以参见动态规划:编辑距离(Edit Distance)

代码实现

//使用动态规划进行解题
//使用二维数组进行求解动态规划问题
class Solution {
public:
    vector<vector<int>> dp;
    int minVal(int a,int b,int c){
        return min(a,min(b,c));
    }

    int minDistance(string word1, string word2) {
        int m = word1.size();
        int n = word2.size();
        dp.assign(m+1,vector<int>(n+1));

        //动态规划,首先对边界条件进行初始化
        for(int i=0;i<=m;i++){
            dp[i][0] = i;
        }
        for(int j=0;j<=n;j++){
            dp[0][j] = j;
        }

        //接下来进行递推,有状态转移方程可以得知,递推的顺序应该是自上而下,自左而右
        for(int i=1;i<=m;i++){
            for(int j=1;j<=n;j++){
                if(word1[i-1] == word2[j-1]){
                    dp[i][j] = dp[i-1][j-1];
                }else{
                    dp[i][j] = minVal(dp[i-1][j]+1,dp[i][j-1]+1,dp[i-1][j-1]+1);
                }
            }
        }

        return dp[m][n];
    }
};

码后反思

  1. 其实编辑距离的解法就是在暴力枚举的基础上引入了重叠子问题的思想,使用dp数组来解决重叠子问题~
  2. 代码量好少,就是比较难想到这种纯暴力的元素做法!

二刷代码

省去了一些思维量的代码:

//使用动态规划进行解题
//使用二维数组进行求解动态规划问题
class Solution {
public:
    vector<vector<int>> dp;
    int minVal(int a,int b,int c){
        return min(a,min(b,c));
    }

    int minDistance(string word1, string word2) {
        int m = word1.size();
        int n = word2.size();
        dp.assign(m+1,vector<int>(n+1));

        //动态规划,首先对边界条件进行初始化
        for(int i=0;i<=m;i++){
            dp[i][0] = i;
        }
        for(int j=0;j<=n;j++){
            dp[0][j] = j;
        }

        //接下来进行递推,有状态转移方程可以得知,递推的顺序应该是自上而下,自左而右
        for(int i=1;i<=m;i++){
            for(int j=1;j<=n;j++){
                if(word1[i-1] == word2[j-1]){
                    dp[i][j] = min(dp[i-1][j-1],dp[i-1][j]+1);
                    dp[i][j] = min(dp[i][j],dp[i][j-1]+1);
                    dp[i][j] = min(dp[i][j],dp[i-1][j-1]+1); 
                }else{
                    dp[i][j] = minVal(dp[i-1][j]+1,dp[i][j-1]+1,dp[i-1][j-1]+1);
                }
            }
        }

        return dp[m][n];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值