设计一个找到数据流中第 k 大元素的类(class)。注意是排序后的第 k 大元素,不是第 k 个不同的元素。
请实现 KthLargest 类:KthLargest(int k, int[] nums) 使用整数 k 和整数流 nums 初始化对象。
int add(int val) 将 val 插入数据流 nums 后,返回当前数据流中第 k 大的元素。
如下:
输入:
["KthLargest", "add", "add", "add", "add", "add"]
[[3, [4, 5, 8, 2]], [3], [5], [10], [9], [4]]
输出:
[null, 4, 5, 5, 8, 8]
解释:
KthLargest kthLargest = new KthLargest(3, [4, 5, 8, 2]);
kthLargest.add(3); // return 4
kthLargest.add(5); // return 5
kthLargest.add(10); // return 5
kthLargest.add(9); // return 8
kthLargest.add(4); // return 8
当我们要找一个数据流中的最大值时还是比较简单的,我们可以用一个变量存储最大值,当来一个值时和最大值进行比较,如果比最大值大,则替换最大值,如果比最大值小,则不做任何处理,这样我们就可以获得数据流中的最大值。
//核心代码
int maxValue = Integer.MIN_VALUE;
//当数据流中的一个值进入时
if(data > maxValue)
{
maxValue = data;
}
那对于求数据流中的第k大元素,其实道理也是类似的,如果我们把前k大的元素存储起来,那这k个元素中最小的一个元素,即为第k大元素。那可以按照如下的方向进行思考,可以用一个数组存储前k大的元素,可以把元素进行排序存储。如果使用快速排序,排序的时间复杂度就是O(Klgk)
当数据流中的一个一个元素进入时,如果数组中的元素小于k个,那添加入存储结果中,同时进行排序,那对于每一个元素都需要进行如此操作,最中的时间复杂度就是O(NKlgk),代码如下。
package Ycb;
import java.util.ArrayList;
import java.util.Comparator;
import java.util.List;
public class KthLargest {
private List<Integer> stores;
private int k;
public KthLargest(int k, int[] nums) {
this.k = k;
//初始化存储数组
stores = new ArrayList<>();
for (int i = 0; i < nums.length; i++) {
stores.add(nums[i]);
}
//按照降序排序
stores.sort(new Comparator<Integer>() {
@Override
public int compare(Integer o1, Integer o2) {
return o2 - o1;
}
});
//如果stores中元素的个数大于k,则需要移除,保证stores中存储的元素个数小于等于k
if (stores.size() > k) {
for (int i = stores.size() - 1; i > k - 1; i--) {
stores.remove(i);
}
}
}
public int add(int val) {
if (stores.size() < k) {
stores.add(val);
} else if (val > stores.get(stores.size() - 1)) {
stores.remove(stores.size() - 1);
stores.add(val);
}
//按照降序排序
stores.sort(new Comparator<Integer>() {
@Override
public int compare(Integer o1, Integer o2) {
return o2 - o1;
}
});
return stores.get(stores.size() - 1);
}
}
从以上的逻辑中可以看出,每一个元素加入到数组中之后对需要对stores中的元素进行排序,其实可以对这一部分进行优化,优先级队列就可以解决这个问题。
可以使用一个小顶堆代替数组,当来一个元素时,如果比堆顶还小,则直接抛弃,如果比堆顶元素大,则把堆顶元素移除,同时把元素放入堆中,再执行堆化等等操作。分析清楚问题之后代码就比较简单了,直接给出代码
package Ycb;
import java.util.PriorityQueue;
public class KthLargest {
final PriorityQueue<Integer> priorityQueue;
final int k;
public KthLargest(int k, int[] nums) {
this.k = k;
priorityQueue = new PriorityQueue<Integer>(k);
for (int n : nums) {
add(n);
}
}
public int add(int val) {
//说明堆中的元素还没有到达k,直接添加进入堆即可
if (priorityQueue.size() < k) {
priorityQueue.offer(val);
} else if (priorityQueue.peek() < val) {
priorityQueue.poll();
priorityQueue.offer(val);
}
return priorityQueue.peek();
}
}