题目
:设计一个找到数据流中第K大元素的类(class)。注意是排序后的第K大元素,不是第K个不同的元素。
你的 KthLargest 类需要一个同时接收整数 k 和整数数组nums 的构造器,它包含数据流中的初始元素。每次调用 KthLargest.add,返
回当前数据流中第K大的元素。
示例:
int k = 3;
int[] arr = [4,5,8,2];
KthLargest kthLargest = new KthLargest(3, arr);
kthLargest.add(3); // returns 4
kthLargest.add(5); // returns 5
kthLargest.add(10); // returns 5
kthLargest.add(9); // returns 8
kthLargest.add(4); // returns 8
说明:
你可以假设 nums 的长度≥ k-1 且k ≥ 1。
Related Topics 堆
👍 139 👎 0
解答:
方法一:直接排序法
class KthLargest(object):
def __init__(self, k, nums):
"""
:type k: int
:type nums: List[int]
"""
self.nums = nums
self.k = k
self.nums.sort(reverse = True)
while len(self.nums) > k:
self.nums.pop()
def add(self, val):
"""
:type val: int
:rtype: int
"""
self.nums.append(val)
self.nums.sort(reverse = True)
if len(self.nums) > self.k:
self.nums.pop()
return self.nums[-1]
方法二:最小堆 heapq
注意:python使用堆heapq 堆讲解
import heapq
# leetcode submit region begin(Prohibit modification and deletion)
class KthLargest(object):
def __init__(self, k, nums):
"""
:type k: int
:type nums: List[int]
"""
self.pool = nums
heapq.heapify(self.pool)
self.k = k
while len(self.pool) > k:
heapq.heappop(self.pool)
def add(self, val):
"""
:type val: int
:rtype: int
"""
if len(self.pool) < self.k:
heapq.heappush(self.pool, val)
elif val > self.pool[0]:
heapq.heapreplace(self.pool, val)
return self.pool[0]
总结就是 需要了解堆的结构特点,以及python提供的几个堆的函数功能。
我们用简单的公式来描述一下堆的定义就是:
大顶堆:arr[i] >= arr[2i+1] && arr[i] >= arr[2i+2]
小顶堆:arr[i] <= arr[2i+1] && arr[i] <= arr[2i+2]