最大连续子序列的和是一道很经典的算法问题,给定一个数列,其中可能有正数也可能有负数,我们的任务是找出其中连续的一个子数列(不允许空序列),使它们的和尽可能大。
例:输入序列 [2,3,-1,4] , 输出 9
注意:可以假设 输入的数组不为空,同时输入的值都是整数。
解法一:暴力破解 ,可以穷举出所有的子序列,然后计算每个子序列的和,时间复杂度是O(N ^ 3),代码如下:
private static int MaxSum(int[] nums) {
if (nums == null || nums.length == 0)
return 0;
int maxSum = nums[0];
for (int i = 0; i < nums.length; i++) {
for (int j = i; j < nums.length; j++) {
int sum = 0;
for (int k = i; k <= j; k++) {
sum += nums[k];
}
if (sum > maxSum)
maxSum = sum;
}
}
return maxSum;
}
解法二:可用用一个数组记录从开始到某个位置的和,例如sum[i] 表示从位置0到位置i的和,就可以省略到算法一中的第三层循环,算法的时间复杂度是 O(N ^ 2)
private static int MaxSum1(int[] nums) {
if (nums == null || nums.length == 0)
return 0;
// 存储值
int[] sums = new int[nums.length];
sums[0] = nums[0];
for (int i = 1; i < nums.length; i++) {
sums[i] = nums[i] + sums[i - 1];
}
int maxSum = nums[0];
for (int i = 0; i < nums.length; i++) {
for (int j = i; j < nums.length; j++) {
int sum = sums[j] - sums[i];
if (sum > maxSum)
maxSum = sum;
}
}
return maxSum;
}
解法三 :分治法,见下图,时间复杂度是 O(N*logN)
代码如下:
private static int maxProduct(int[] nums, int left, int right) {
// 序列长度为1时
if (left == right) {
return nums[left];
}
// 划分为两个规模更小的子问题
int mid = (left + right) >> 1;
int iMaxLeft = maxProduct(nums, left, mid);
int iMaxRight = maxProduct(nums, mid + 1, right);
// 横跨分割点的情况
int sum = 0, lmax = nums[mid], rmax = nums[mid + 1];
for (int i = mid; i >= left; i--) {
sum += nums[i];
if (sum > lmax)
lmax = sum;
}
sum = 0;
for (int i = mid + 1; i <= right; i++) {
sum += nums[i];
if (sum > rmax)
rmax = sum;
}
// 答案是三种情况的最大值
int ans = lmax + rmax;
if (iMaxLeft > ans)
ans = iMaxLeft;
if (iMaxRight > ans)
ans = iMaxRight;
return ans;
}
解法四:动态规划
设置 dp[i] 表示以第i个数结尾的最大子序列的和,则 可以推导出以下公式
dp[n] = max(0, dp[n-1]) + nums[n]。则最大子序列的和是 max(dp[m]) | m∈[0, N-1]
。
代码如下:
private static int MaxSum3(int[] nums) {
if (nums == null || nums.length == 0)
return 0;
int maxSum = nums[0];
for (int i = 1; i < nums.length; i++) {
// 计算max(0,dp[i-1]) 的值,此处可以单独创建一个dp数组,但是根据递推关系,可以直接使用原数组存储
nums[i] += Math.max(0, nums[i - 1]);
// 获取max(dp[m])
if (nums[i] > maxSum)
maxSum = nums[i];
}
return maxSum;
}