经典算法-求最大子序列的和

最大连续子序列的和是一道很经典的算法问题,给定一个数列,其中可能有正数也可能有负数,我们的任务是找出其中连续的一个子数列(不允许空序列),使它们的和尽可能大。

例:输入序列 [2,3,-1,4]  , 输出 9 

注意:可以假设 输入的数组不为空,同时输入的值都是整数。

解法一:暴力破解 ,可以穷举出所有的子序列,然后计算每个子序列的和,时间复杂度是O(N ^ 3),代码如下:

private static int MaxSum(int[] nums) {
		if (nums == null || nums.length == 0)
			return 0;

		int maxSum = nums[0];

		for (int i = 0; i < nums.length; i++) {
			for (int j = i; j < nums.length; j++) {
				int sum = 0;
				for (int k = i; k <= j; k++) {
					sum += nums[k];
				}
				if (sum > maxSum)
					maxSum = sum;
			}
		}
		return maxSum;
	}

解法二:可用用一个数组记录从开始到某个位置的和,例如sum[i] 表示从位置0到位置i的和,就可以省略到算法一中的第三层循环,算法的时间复杂度是 O(N ^ 2) 

private static int MaxSum1(int[] nums) {
		if (nums == null || nums.length == 0)
			return 0;

		// 存储值
		int[] sums = new int[nums.length];
		sums[0] = nums[0];
		for (int i = 1; i < nums.length; i++) {
			sums[i] = nums[i] + sums[i - 1];
		}

		int maxSum = nums[0];
		for (int i = 0; i < nums.length; i++) {
			for (int j = i; j < nums.length; j++) {
				int sum = sums[j] - sums[i];
				if (sum > maxSum)
					maxSum = sum;
			}
		}
		return maxSum;
	}

解法三 :分治法,见下图,时间复杂度是 O(N*logN) 

代码如下:

private static int maxProduct(int[] nums, int left, int right) {
		// 序列长度为1时
		if (left == right) {
			return nums[left];
		}

		// 划分为两个规模更小的子问题
		int mid = (left + right) >> 1;
		int iMaxLeft = maxProduct(nums, left, mid);
		int iMaxRight = maxProduct(nums, mid + 1, right);

		// 横跨分割点的情况
		int sum = 0, lmax = nums[mid], rmax = nums[mid + 1];
		for (int i = mid; i >= left; i--) {
			sum += nums[i];
			if (sum > lmax)
				lmax = sum;
		}

		sum = 0;
		for (int i = mid + 1; i <= right; i++) {
			sum += nums[i];
			if (sum > rmax)
				rmax = sum;
		}

		// 答案是三种情况的最大值
		int ans = lmax + rmax;
		if (iMaxLeft > ans)
			ans = iMaxLeft;
		if (iMaxRight > ans)
			ans = iMaxRight;

		return ans;
	}

解法四:动态规划

设置 dp[i] 表示以第i个数结尾的最大子序列的和,则 可以推导出以下公式

dp[n] = max(0, dp[n-1]) + nums[n]。则最大子序列的和是 max(dp[m]) | m∈[0, N-1]

代码如下:

private static int MaxSum3(int[] nums) {
		if (nums == null || nums.length == 0)
			return 0;

		int maxSum = nums[0];
		for (int i = 1; i < nums.length; i++) {

			// 计算max(0,dp[i-1]) 的值,此处可以单独创建一个dp数组,但是根据递推关系,可以直接使用原数组存储
			nums[i] += Math.max(0, nums[i - 1]);

			// 获取max(dp[m])
			if (nums[i] > maxSum)
				maxSum = nums[i];
		}
		return maxSum;
	}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值