深度学习
文章平均质量分 52
ronales
这个作者很懒,什么都没留下…
展开
-
【性能比较】关于pytorch中的unsample和反卷积的耗时
import timetranspose_conv = nn.ConvTranspose2d( in_channels=3, out_channels=3, kernel_size=3, stride=2, padding=1, output_padding=1)unsample = nn.Upsample(.原创 2021-10-08 14:12:15 · 788 阅读 · 0 评论 -
【Pytorch2caffe】pytorch转caffe的一些注意细节
收集整理,感谢以下作者的解释。在设计pytorch网络结构的时候,务必注意下面几个点,防止训了很久的模型转成caffe不能用的情况。#1、q&a:#0929_1 pytorch 中的ceil mode 为false,则默认当奇数数feature size时,去掉多余的边的数据再进行maxpool;反之当ceil mode为true,则保留多余边数据,再maxpool#规避 maxpool 时,尽量送入池化层时采用偶数hxw的feature mapPytorch中池化层默认的ceil m.原创 2021-09-29 13:52:03 · 1037 阅读 · 0 评论 -
深度学习笔记一: LeNet-5、AlexNet 和 VGGNet等网络模型的小结
最近在学习吴恩达Andrew Ng的深度学习课程,之前对这几个网络还比较混乱,现在记录一下:LeNet-5神经网络的贡献: 1.这是一个比较早的网络模型,其中在卷积层后面加入池化层的思想先今还在使用。2.在最后的卷积层接入池化层和全连接层在当前也比较常用。出处:Gradient-Based Learning Applied to Document Recognition其结构...原创 2018-10-25 20:17:50 · 6939 阅读 · 2 评论 -
【代码】python 非minist数据(jpg、png等)转minist格式数据集
2019.12.23号更新!!!!!法一搞不定就看法二,有半年没接触过这个转换代码了,大家试试看,我之前是可以用的法一:###############################################################################333注意几点:1.只支持“正方形”的数据(width==height)的图片 (目前还没找到好的解决方...原创 2019-04-02 10:55:31 · 3082 阅读 · 56 评论