[NOIP 2012] 同余方程 · 拓展欧几里得

随便感受一下,就是给你a,b两个值,求ax+by=1的一组解(x,y),使得x是所有解中最小的正整数,然后输出x。

今天学习了一下ExGcd,就拿这题练手了。

首先,用exgcd可以求出ax+by=k*gcd(a,b) (k∈N*)的整数解,所以既然题目保证有解,那么(a,b)肯定互质,不过这个性质好像没什么大用哈……

ExGcd(扩展欧几里得)是利用迭代法求出这个方程的解:

int gcd(int a,int b,int &x,int &y){
	if (!b){
		x=1;y=0;
		return a;
	}
	int p,t;t=gcd(b,a%b,x,y);
	p=x;
	x=y;
	y=p-y*(int)(a/b);
	return t;
}

笔者刚开始学的时候后面那部分很是不懂,然后就看了一些讲义加自己手推式子,总算是理解了。

设ax1+by1=gcd(a,b), bx2+(a%b)y2=gcd(b,a%b),

因为gcd(a,b)=gcd(b,a%b)

所以有ax1+by1=bx2+(a%b)y2,

再将a%b变为a-(a div b)*b的形式,左右合并同类项,就变成了:

ax1+by1=ay2+b[x2-(a div b)*y2],根据恒等定理得到:

x1=y2

y1=x2-(a div b)*y2

边界为b'=0时 x=1,y=0,此时的a'就是gcd(a,b).那么只要通过不断迭代就可以求出x,y了。

另外求出的x可能为负数,这时该怎么办?只要把x不断加上b直到x>0为止。这个问题的解决方法也是笔者当初一个没有理解的地方,后来无意中推算出来了:ax+by=ax+by+ab-ab=a(x+b)+b(y-a),(据某神犇说其实是ab/gcd(a,b),但因为a,b互质,所以gcd(a,)=1).a,b值是固定的,所以这样就构成了一个对应关系:对于确定a,b的方程ax+by=gcd(a,b),如果(x,y)是一组解,那么(x+b,y-a)也是一组解,而此时不用考虑y的值,所以就得到了上文那个方法,在程序中可以简写为: x=(x%b+b)%b。

#include <stdio.h>
#include <algorithm>
#include <string.h>
#include <iostream>
using namespace std;
#define read freopen("mod.in","r",stdin)
#define write freopen("mod.ans","w",stdout)

int a,b,x,y;

int gcd(int a,int b,int &x,int &y){
	if (!b){
		x=1;y=0;
		return a;
	}
	int p,t;t=gcd(b,a%b,x,y);
	p=x;
	x=y;
	y=p-y*(int)(a/b);
	return t;
}

int main(){
	read;write;
	cin>>a>>b;
	gcd(a,b,x,y);
	cout<<(x%b+b)%b<<endl;
	return 0;
}


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值